Cargando…
Camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape
Ground‐nesting farmland birds such as the grey partridge (Perdix perdix) have been rapidly declining due to a combination of habitat loss, food shortage, and predation. Predator activity is the least understood factor, especially its modulation by landscape composition and complexity. An important q...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277515/ https://www.ncbi.nlm.nih.gov/pubmed/35845379 http://dx.doi.org/10.1002/ece3.9027 |
_version_ | 1784745998867759104 |
---|---|
author | Laux, Amelie Waltert, Matthias Gottschalk, Eckhard |
author_facet | Laux, Amelie Waltert, Matthias Gottschalk, Eckhard |
author_sort | Laux, Amelie |
collection | PubMed |
description | Ground‐nesting farmland birds such as the grey partridge (Perdix perdix) have been rapidly declining due to a combination of habitat loss, food shortage, and predation. Predator activity is the least understood factor, especially its modulation by landscape composition and complexity. An important question is whether agri‐environment schemes such as flower strips are potentially useful for reducing predation risk, for example, from red fox (Vulpes vulpes). We employed 120 camera traps for two summers in an agricultural landscape in Central Germany to record predator activity (i.e., the number of predator captures) as a proxy for predation risk and used generalized linear mixed models (GLMMs) to investigate how the surrounding landscape affects predator activity in different vegetation types (flower strips, hedges, field margins, winter cereal, and rapeseed fields). Additionally, we used 48 cameras to study the distribution of predator captures within flower strips. Vegetation type was the most important factor determining the number of predator captures and capture rates in flower strips were lower than in hedges or field margins. Red fox capture rates were the highest of all predators in every vegetation type, confirming their importance as a predator for ground‐nesting birds. The number of fox captures increased with woodland area and decreased with structural richness and distance to settlements. In flower strips, capture rates in the center were approximately 9 times lower than at the edge. We conclude that the optimal landscape for ground‐nesting farmland birds seems to be open farmland with broad extensive vegetation elements and a high structural richness. Broad flower blocks provide valuable, comparatively safe nesting habitats, and the predation risk can further be minimized by placing them away from woods and settlements. Our results suggest that adequate landscape management may reduce predation pressure. |
format | Online Article Text |
id | pubmed-9277515 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92775152022-07-15 Camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape Laux, Amelie Waltert, Matthias Gottschalk, Eckhard Ecol Evol Research Articles Ground‐nesting farmland birds such as the grey partridge (Perdix perdix) have been rapidly declining due to a combination of habitat loss, food shortage, and predation. Predator activity is the least understood factor, especially its modulation by landscape composition and complexity. An important question is whether agri‐environment schemes such as flower strips are potentially useful for reducing predation risk, for example, from red fox (Vulpes vulpes). We employed 120 camera traps for two summers in an agricultural landscape in Central Germany to record predator activity (i.e., the number of predator captures) as a proxy for predation risk and used generalized linear mixed models (GLMMs) to investigate how the surrounding landscape affects predator activity in different vegetation types (flower strips, hedges, field margins, winter cereal, and rapeseed fields). Additionally, we used 48 cameras to study the distribution of predator captures within flower strips. Vegetation type was the most important factor determining the number of predator captures and capture rates in flower strips were lower than in hedges or field margins. Red fox capture rates were the highest of all predators in every vegetation type, confirming their importance as a predator for ground‐nesting birds. The number of fox captures increased with woodland area and decreased with structural richness and distance to settlements. In flower strips, capture rates in the center were approximately 9 times lower than at the edge. We conclude that the optimal landscape for ground‐nesting farmland birds seems to be open farmland with broad extensive vegetation elements and a high structural richness. Broad flower blocks provide valuable, comparatively safe nesting habitats, and the predation risk can further be minimized by placing them away from woods and settlements. Our results suggest that adequate landscape management may reduce predation pressure. John Wiley and Sons Inc. 2022-07-13 /pmc/articles/PMC9277515/ /pubmed/35845379 http://dx.doi.org/10.1002/ece3.9027 Text en © 2022 The Authors. Ecology and Evolution published by John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Laux, Amelie Waltert, Matthias Gottschalk, Eckhard Camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape |
title | Camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape |
title_full | Camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape |
title_fullStr | Camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape |
title_full_unstemmed | Camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape |
title_short | Camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape |
title_sort | camera trap data suggest uneven predation risk across vegetation types in a mixed farmland landscape |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277515/ https://www.ncbi.nlm.nih.gov/pubmed/35845379 http://dx.doi.org/10.1002/ece3.9027 |
work_keys_str_mv | AT lauxamelie cameratrapdatasuggestunevenpredationriskacrossvegetationtypesinamixedfarmlandlandscape AT waltertmatthias cameratrapdatasuggestunevenpredationriskacrossvegetationtypesinamixedfarmlandlandscape AT gottschalkeckhard cameratrapdatasuggestunevenpredationriskacrossvegetationtypesinamixedfarmlandlandscape |