Cargando…

Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) versus classical 9‐phenanthrol

Non‐selective cation channels in urinary bladder smooth muscle (UBSM) are thought to mediate increases in cellular excitability and contractility. For transient receptor potential melastatin type‐4 (TRPM4) channels, the evidence primarily relies on the inhibitor 9‐phenanthrol, which exhibits pharmac...

Descripción completa

Detalles Bibliográficos
Autores principales: Malysz, John, Maxwell, Sarah E., Petkov, Georgi V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277609/
https://www.ncbi.nlm.nih.gov/pubmed/35822549
http://dx.doi.org/10.1002/prp2.982
_version_ 1784746020677091328
author Malysz, John
Maxwell, Sarah E.
Petkov, Georgi V.
author_facet Malysz, John
Maxwell, Sarah E.
Petkov, Georgi V.
author_sort Malysz, John
collection PubMed
description Non‐selective cation channels in urinary bladder smooth muscle (UBSM) are thought to mediate increases in cellular excitability and contractility. For transient receptor potential melastatin type‐4 (TRPM4) channels, the evidence primarily relies on the inhibitor 9‐phenanthrol, which exhibits pharmacological limitations. Recently, 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) has been discovered as a novel TRPM4 channel blocker. We examined how, in comparison to 9‐phenanthrol, CBA affects the excitability of freshly isolated guinea pig UBSM cells and the contractility of UBSM strips. Additionally, non‐selective TRPM4 channel inhibitor flufenamic acid (FFA) and potentiator BTP2 (also known as YM‐58483) were studied in UBSM cells. Unlike robust inhibition for 9‐phenanthrol already known, CBA (up to 100 μM) displayed either no or a very weak reduction (<20%) in spontaneous phasic, 20 mM KCl‐induced, and electrical field stimulated contractions. For 300 μM CBA, reductions were higher except for an increase in the frequency of KCl‐induced contractions. In UBSM cells, examined under amphotericin B‐perforated patch‐clamp, CBA (30 μM) did not affect the membrane potential (I = 0) or voltage step‐induced whole‐cell cation currents, sensitive to 9‐phenanthrol. The currents were not inhibited by FFA (100 μM), increased by BTP2 (10 μM), nor enhanced under a strongly depolarizing holding voltage of −16 or + 6 mV (vs. −74 mV). None of the three compounds affected the cell capacitance, unlike 9‐phenanthrol. In summary, the novel inhibitor CBA and nonselective FFA did not mimic the inhibitory properties of 9‐phenanthrol on UBSM function. These results suggest that TRPM4 channels, although expressed in UBSM, play a distinct role rather than direct regulation of excitability and contractility.
format Online
Article
Text
id pubmed-9277609
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92776092022-07-15 Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) versus classical 9‐phenanthrol Malysz, John Maxwell, Sarah E. Petkov, Georgi V. Pharmacol Res Perspect Original Articles Non‐selective cation channels in urinary bladder smooth muscle (UBSM) are thought to mediate increases in cellular excitability and contractility. For transient receptor potential melastatin type‐4 (TRPM4) channels, the evidence primarily relies on the inhibitor 9‐phenanthrol, which exhibits pharmacological limitations. Recently, 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) has been discovered as a novel TRPM4 channel blocker. We examined how, in comparison to 9‐phenanthrol, CBA affects the excitability of freshly isolated guinea pig UBSM cells and the contractility of UBSM strips. Additionally, non‐selective TRPM4 channel inhibitor flufenamic acid (FFA) and potentiator BTP2 (also known as YM‐58483) were studied in UBSM cells. Unlike robust inhibition for 9‐phenanthrol already known, CBA (up to 100 μM) displayed either no or a very weak reduction (<20%) in spontaneous phasic, 20 mM KCl‐induced, and electrical field stimulated contractions. For 300 μM CBA, reductions were higher except for an increase in the frequency of KCl‐induced contractions. In UBSM cells, examined under amphotericin B‐perforated patch‐clamp, CBA (30 μM) did not affect the membrane potential (I = 0) or voltage step‐induced whole‐cell cation currents, sensitive to 9‐phenanthrol. The currents were not inhibited by FFA (100 μM), increased by BTP2 (10 μM), nor enhanced under a strongly depolarizing holding voltage of −16 or + 6 mV (vs. −74 mV). None of the three compounds affected the cell capacitance, unlike 9‐phenanthrol. In summary, the novel inhibitor CBA and nonselective FFA did not mimic the inhibitory properties of 9‐phenanthrol on UBSM function. These results suggest that TRPM4 channels, although expressed in UBSM, play a distinct role rather than direct regulation of excitability and contractility. John Wiley and Sons Inc. 2022-07-13 /pmc/articles/PMC9277609/ /pubmed/35822549 http://dx.doi.org/10.1002/prp2.982 Text en © 2022 The Authors. Pharmacology Research & Perspectives published by British Pharmacological Society and American Society for Pharmacology and Experimental Therapeutics and John Wiley & Sons Ltd. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Original Articles
Malysz, John
Maxwell, Sarah E.
Petkov, Georgi V.
Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) versus classical 9‐phenanthrol
title Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) versus classical 9‐phenanthrol
title_full Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) versus classical 9‐phenanthrol
title_fullStr Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) versus classical 9‐phenanthrol
title_full_unstemmed Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) versus classical 9‐phenanthrol
title_short Differential effects of TRPM4 channel inhibitors on Guinea pig urinary bladder smooth muscle excitability and contractility: Novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (CBA) versus classical 9‐phenanthrol
title_sort differential effects of trpm4 channel inhibitors on guinea pig urinary bladder smooth muscle excitability and contractility: novel 4‐chloro‐2‐[2‐(2‐chloro‐phenoxy)‐acetylamino]‐benzoic acid (cba) versus classical 9‐phenanthrol
topic Original Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277609/
https://www.ncbi.nlm.nih.gov/pubmed/35822549
http://dx.doi.org/10.1002/prp2.982
work_keys_str_mv AT malyszjohn differentialeffectsoftrpm4channelinhibitorsonguineapigurinarybladdersmoothmuscleexcitabilityandcontractilitynovel4chloro222chlorophenoxyacetylaminobenzoicacidcbaversusclassical9phenanthrol
AT maxwellsarahe differentialeffectsoftrpm4channelinhibitorsonguineapigurinarybladdersmoothmuscleexcitabilityandcontractilitynovel4chloro222chlorophenoxyacetylaminobenzoicacidcbaversusclassical9phenanthrol
AT petkovgeorgiv differentialeffectsoftrpm4channelinhibitorsonguineapigurinarybladdersmoothmuscleexcitabilityandcontractilitynovel4chloro222chlorophenoxyacetylaminobenzoicacidcbaversusclassical9phenanthrol