Cargando…
An objective framework for evaluating unrecognized bias in medical AI models predicting COVID-19 outcomes
OBJECTIVE: The increasing translation of artificial intelligence (AI)/machine learning (ML) models into clinical practice brings an increased risk of direct harm from modeling bias; however, bias remains incompletely measured in many medical AI applications. This article aims to provide a framework...
Autores principales: | Estiri, Hossein, Strasser, Zachary H, Rashidian, Sina, Klann, Jeffrey G, Wagholikar, Kavishwar B, McCoy, Thomas H, Murphy, Shawn N |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277645/ https://www.ncbi.nlm.nih.gov/pubmed/35511151 http://dx.doi.org/10.1093/jamia/ocac070 |
Ejemplares similares
-
Predicting COVID-19 mortality with electronic medical records
por: Estiri, Hossein, et al.
Publicado: (2021) -
Transitive Sequencing Medical Records for Mining Predictive and Interpretable Temporal Representations
por: Estiri, Hossein, et al.
Publicado: (2020) -
Web services for data warehouses: OMOP and PCORnet on i2b2
por: Klann, Jeffrey G, et al.
Publicado: (2018) -
Exploring completeness in clinical data research networks with DQ(e)-c
por: Estiri, Hossein, et al.
Publicado: (2017) -
Polar labeling: silver standard algorithm for training disease classifiers
por: Wagholikar, Kavishwar B, et al.
Publicado: (2020)