Cargando…

Identification and characterization of transposable element AhMITE1 in the genomes of cultivated and two wild peanuts

BACKGROUND: The cultivated peanut (Arachis hypogaea L., AABB) is an allotetraploid hybrid between two diploid peanuts, A. duranensis (AA genome) and A. ipaensis (BB genome). Miniature inverted-repeat transposable elements (MITEs), some of which are known as active nonautonomous DNA transposons with...

Descripción completa

Detalles Bibliográficos
Autores principales: Tang, Yanyan, Li, Xiaoting, Hu, Changli, Qiu, Xiaochen, Li, Jingjing, Li, Xin, Zhu, Hong, Wang, Jingshan, Sui, Jiongming, Qiao, Lixian
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277781/
https://www.ncbi.nlm.nih.gov/pubmed/35820800
http://dx.doi.org/10.1186/s12864-022-08732-0
Descripción
Sumario:BACKGROUND: The cultivated peanut (Arachis hypogaea L., AABB) is an allotetraploid hybrid between two diploid peanuts, A. duranensis (AA genome) and A. ipaensis (BB genome). Miniature inverted-repeat transposable elements (MITEs), some of which are known as active nonautonomous DNA transposons with high copy numbers, play important roles in genome evolution and diversification. AhMITE1, a member of the MITE family of transposons, but information on the peanut genomes is still limited. Here, we analyzed AhMITE1, AuMITE1 and ApMITE1 in the cultivated (A. hypogaea) and two wild peanut (A. duranensis and A. ipaensis) genomes. RESULTS: The cultivated and the two wild peanut genomes harbored 142, 14 and 21 AhMITE1, AuMITE1 and ApMITE1 family members, respectively. These three family members exhibited highly conserved TIR sequences, and insertions preferentially occurred within 2 kb upstream and downstream of gene-coding and AT-rich regions. Phylogenetic and pairwise nucleotide diversity analysis showed that AhMITE1 and ApMITE1 family members have undergone one round of amplification bursts during the evolution of the peanut genome. PCR analyses were performed in 23 peanut varieties and demonstrated that AhMITE1 is an active transposon and that hybridization or chemical mutagenesis can promote the mobilization of AhMITE1. CONCLUSIONS: AhMITE1, AuMITE1 and ApMITE1 family members were identified based on local BLAST search with MAK between the cultivated and the two wild peanut genomes. The phylogenetic, nucleotide diversity and variation copy numbers of AhMITE1, AuMITE1 and ApMITE1 members provides opportunities for investigating their roles during peanut evolution. These findings will contribute to knowledge on diversity of AhMITE1, provide information about the potential impact on the gene expression and promote the development of DNA markers in peanut. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s12864-022-08732-0.