Cargando…

BMSC-derived exosomes protect against kidney injury through regulating klotho in 5/6 nephrectomy rats

AIM: The aim of this study was to investigate the renoprotective effects of exosomes derived from rat bone marrow mesenchymal stem cells (rBMSCs) in a rat model of 5/6 nephrectomy (Nx)-induced chronic kidney disease (CKD). METHODS: A rat model of 5/6 Nx-induced CKD was established using conventional...

Descripción completa

Detalles Bibliográficos
Autores principales: Wan, Feng, Yang, Ru-chun, Tang, Yue-wen, Tang, Xuan-li, Ye, Tian, Zheng, Jie, Zhang, Hua-qin, Lin, Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9277829/
https://www.ncbi.nlm.nih.gov/pubmed/35820962
http://dx.doi.org/10.1186/s40001-022-00742-8
Descripción
Sumario:AIM: The aim of this study was to investigate the renoprotective effects of exosomes derived from rat bone marrow mesenchymal stem cells (rBMSCs) in a rat model of 5/6 nephrectomy (Nx)-induced chronic kidney disease (CKD). METHODS: A rat model of 5/6 Nx-induced CKD was established using conventional method. rBMSC-derived exosomes were isolated using ultracentrifugation and characterized. The exosomes were injected into 5/6 Nx rats through the caudal vein. After 12 weeks, 24 h proteinuria, serum creatinine (SCr), and blood urea nitrogen (BUN) levels were evaluated, and renal pathology was analyzed by H&E and Masson staining, and transmission electron microscopy. The expression of klotho was analyzed and the activity of the klotho promoter was evaluated using a luciferase reporter assay. RESULTS: The isolated exosomes showed typical morphological features. Exosomes transplantation reduced 24 h urinary protein excretion, and SCr and BUN levels in 5/6 Nx-induced CKD rats. Furthermore, renal pathology was improved in the exosome-treated 5/6 Nx rats. Mechanistically, the exosomes significantly upregulated the activity of klotho promoter and its expression. CONCLUSIONS: Transplantation of rBMSC-derived exosomes may protect against kidney injury, probably by regulating klotho activity and expression. Our results provide a theoretical basis for the application of rBMSC-derived exosomes in CKD therapy. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40001-022-00742-8.