Cargando…

A computational algorithm to assess the physiochemical determinants of T cell receptor dissociation kinetics

The rational design of T Cell Receptors (TCRs) for immunotherapy has stagnated due to a limited understanding of the dynamic physiochemical features of the TCR that elicit an immunogenic response. The physiochemical features of the TCR-peptide major histocompatibility complex (pMHC) bond dictate bon...

Descripción completa

Detalles Bibliográficos
Autores principales: Rollins, Zachary A., Huang, Jun, Tagkopoulos, Ilias, Faller, Roland, George, Steven C.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278023/
https://www.ncbi.nlm.nih.gov/pubmed/35860406
http://dx.doi.org/10.1016/j.csbj.2022.06.048
Descripción
Sumario:The rational design of T Cell Receptors (TCRs) for immunotherapy has stagnated due to a limited understanding of the dynamic physiochemical features of the TCR that elicit an immunogenic response. The physiochemical features of the TCR-peptide major histocompatibility complex (pMHC) bond dictate bond lifetime which, in turn, correlates with immunogenicity. Here, we: i) characterize the force-dependent dissociation kinetics of the bond between a TCR and a set of pMHC ligands using Steered Molecular Dynamics (SMD); and ii) implement a machine learning algorithm to identify which physiochemical features of the TCR govern dissociation kinetics. Our results demonstrate that the total number of hydrogen bonds between the CDR2β-MHC⍺(β), CDR1α-Peptide, and CDR3β-Peptide are critical features that determine bond lifetime.