Cargando…
Combined effects of high-pressure processing and pre-emulsified sesame oil incorporation on physical, chemical, and functional properties of reduced-fat pork batters
In this study, the changes in emulsion stability, colour, textural properties, and protein secondary structure of reduced-fat pork batters (50% pork back-fat and 50% pre-emulsified sesame oil) treated under different pressures (0.1, 200 and 400 MPa) were investigated. The emulsion stability, cooking...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278027/ https://www.ncbi.nlm.nih.gov/pubmed/35845922 http://dx.doi.org/10.1016/j.crfs.2022.06.009 |
Sumario: | In this study, the changes in emulsion stability, colour, textural properties, and protein secondary structure of reduced-fat pork batters (50% pork back-fat and 50% pre-emulsified sesame oil) treated under different pressures (0.1, 200 and 400 MPa) were investigated. The emulsion stability, cooking yield, L* value, texture properties, initial relaxation times of T(2b), T(21,) and T(22), and peak ratios of P(21) in the samples treated under 200 and 400 MPa significantly increased (p < 0.05) compared with those at 0.1 MPa, but the a* and b* values, and the peak ratio of P(22) significantly decreased (p < 0.05). The sample treated at 200 MPa exhibited the best emulsion stability, textural properties, water-holding capacity and sensory scores among the samples. High-pressure processing induced structural changes from α-helical to β-sheet, β-turn, and random coil structures, enhancing protein-water incorporation and lowering water mobility. High-pressure processing and pre-emulsified sesame oil improved the techno-functional properties and emulsion stability of reduced-fat pork batters. |
---|