Cargando…

Taohong Siwu Decoction exerts anticancer effects on breast cancer via regulating MYC, BIRC5, EGF and PIK3R1 revealed by HTS(2) technology

Taohong Siwu Decoction (TSD), a classical gynecological prescription that was firstly reported 600 years ago, has been widely used in the adjuvant treatment of breast cancer (BRCA) in China. However, the mechanism of action of TSD in treating BRCA has remained unclear. Here, high-throughput sequenci...

Descripción completa

Detalles Bibliográficos
Autores principales: Gui, Yu, Dai, Yifei, Wang, Yumei, Li, Shengrong, Xiang, Lei, Tang, Yuqin, Tan, Xue, Pei, Tianli, Bao, Xilinqiqige, Wang, Dong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278046/
https://www.ncbi.nlm.nih.gov/pubmed/35860405
http://dx.doi.org/10.1016/j.csbj.2022.06.044
Descripción
Sumario:Taohong Siwu Decoction (TSD), a classical gynecological prescription that was firstly reported 600 years ago, has been widely used in the adjuvant treatment of breast cancer (BRCA) in China. However, the mechanism of action of TSD in treating BRCA has remained unclear. Here, high-throughput sequencing-based high-throughput screening (HTS(2)) technology was used to reveal the molecular mechanism of TSD, combination with bioinformatics and systems pharmacology in this study. Firstly, our results showed that TSD exerts an anticancer effect on BRCA cells by inhibiting cell proliferation, migration and inducing apoptosis as well as cell-cycle arrest. And our results from HTS(2) suggested that herbs of TSD could significantly inhibit KRAS pathway and pathway in cancer, and activate apoptosis pathway, p53 pathway and hypoxia pathway, which may lead to the anticancer function of TSD. Further, we found that TSD clearly regulates MYC, BIRC5, EGF, and PIK3R1 genes, which play an important role in the development and progression of tumor and have significant correlation with overall survival in BRCA patients. By molecular docking, we discovered that Pentagalloylglucose, a compound derived from TSD, might directly bind to and inhibit the function of BRD4, which is a reported transcriptional activator of MYC gene, and thus repress the expression of MYC. Taken together, this study explores the mechanism of TSD in anti-BRCA by combining HTS(2) technology, bioinformatics analysis and systems pharmacology.