Cargando…

Transcriptome analysis reveals the potential mechanism of polyethylene packing delaying lignification of Pleurotus eryngii

Transcriptome analysis is important for the quality improvement of edible fungi, however, the effect of polyethylene (PE) packaging on the preservation of Pleurotus eryngii at the transcriptome level still needs to be further investigated. In order to elucidate the effect of PE on delaying lignifica...

Descripción completa

Detalles Bibliográficos
Autores principales: Yu, Wancong, Li, Shihao, Zheng, Bowen, Wang, Yuqi, Yu, Yue, Wang, Yumeng, Zheng, Xu, Liu, Jiping, Zhang, Zhijun, Xue, Zhaohui
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278076/
https://www.ncbi.nlm.nih.gov/pubmed/35845151
http://dx.doi.org/10.1016/j.fochms.2022.100117
Descripción
Sumario:Transcriptome analysis is important for the quality improvement of edible fungi, however, the effect of polyethylene (PE) packaging on the preservation of Pleurotus eryngii at the transcriptome level still needs to be further investigated. In order to elucidate the effect of PE on delaying lignification of P. eryngii, this study focused on exploring effects of PE on enzymes and genes involved in lignification. The results showed that PE packaging delayed the deterioration of phenotype, color difference and weight loss rate of P. eryngii, inhibited lignin and H(2)O(2) content and maintained firmness and cellulose content. The activities of PAL, POD, 4-CL were inhibited, and more laccase expression was activated. Fifty-five differentially expressed genes associated with laccase, multifunctional peroxidase (VP), POD and 4-CL were screened from 10 d, 20 d and 30 d transcriptome data. These results show that PE could inhibit lignification of P. eryngii by up-regulating laccase and VP related genes involved in lignin decomposition and down-regulating the expression of genes involved in lignin synthesis. Meanwhile, we employed Confocal Raman microspectroscopy (CRM) to realize lignin cell level visualization and PE could reduce lignin deposition and weaken the lignin signal bands formed. Therefore, PE can alleviate the lignification of P. eryngii during storage by regulating the expression of specific genes, advancing the understanding of lignification in postharvest P. eryngii at the molecular level, and CRM has the potential to detect the changes of P. eryngii cell wall.