Cargando…
Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3
Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the viral X protein (HBx) is an etiological factor in HCC development. HBx is a high-turnover protein, but knowledge of the role of deubiquitinating enzymes (DUBs) in maintaining HBx homeost...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Microbiology
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278118/ https://www.ncbi.nlm.nih.gov/pubmed/35695579 http://dx.doi.org/10.1128/jvi.00611-22 |
_version_ | 1784746132440612864 |
---|---|
author | Wu, Qiong Zhang, Lu Xu, Xiazhen Zhang, Yi Shi, Jiajian Lin, Xu Chen, Wannan |
author_facet | Wu, Qiong Zhang, Lu Xu, Xiazhen Zhang, Yi Shi, Jiajian Lin, Xu Chen, Wannan |
author_sort | Wu, Qiong |
collection | PubMed |
description | Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the viral X protein (HBx) is an etiological factor in HCC development. HBx is a high-turnover protein, but knowledge of the role of deubiquitinating enzymes (DUBs) in maintaining HBx homeostasis is very limited. We used a 74-DUB library-based yeast two-hybrid assay and determined that a novel DUB, valosin-containing protein-interacting protein 1 (VCPIP1), interacted with HBx. VCPIP1 and its C-terminal amino acids 863 to 1221 upregulated the HBx protein expression, with or without HBV infection. Mechanistically, VCPIP1 stabilized HBx protein through a ubiquitin-independent pathway, which was validated by the HBx ubiquitination site mutant plasmid. Coimmunoprecipitation assays demonstrated the potency of VCPIP1 in recruiting 26S proteasome regulatory subunit 6A (PSMC3) and forming a ternary complex with HBx through mutual interaction. In vitro, purified His-tagged PSMC3 protein rescued HBx degradation induced by the 20S proteasome, and in vivo VCPIP1 synergized the mechanism. Functionally, HBx specifically binding to VCPIP1 significantly enhanced the transcriptional transactivation of HBx by activating NF-κB, AP-1, and SP-1 and inhibited hepatoma cell clonogenicity in Huh7 and HepG2 cells. Moreover, we further demonstrated that overexpression of VCPIP1 significantly affected the HBV covalently closed circular DNA (cccDNA) transcription in HBV-infected HepG2-NTCP cells. Altogether, our results indicate a novel mechanism by which VCPIP1 recruits PSMC3 to bind with HBx, stabilizing it in a ubiquitin-independent manner, which might be critical for developing DUB inhibitors in the future. IMPORTANCE HBx is a multifunctional viral oncoprotein that plays an essential role in the viral life cycle and hepatocarcinogenesis. HBx degradation occurs through the ubiquitin-proteasome system (UPS). However, whether novel compartments of the DUBs in the UPS also act in regulating HBx stability is not fully understood. Here, for the first time, we defined VCPIP1 as a novel DUB for preventing HBx degradation by the 20S proteasome in a ubiquitin-independent manner. PSMC3, encoding the 26S proteasome regulatory subunit, directly stabilized HBx through physical binding instead of a common approach in protein degradation, serving as the key downstream effector of VCPIP1 on HBx. Therefore, the ternary binding pattern between VCPIP1, HBx, and PSMC3 is initiated for the first time, which eventually promotes HBx stability and its functions. Our findings provide novel insights into host-virus cross talk by targeting DUBs in the UPS. |
format | Online Article Text |
id | pubmed-9278118 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Society for Microbiology |
record_format | MEDLINE/PubMed |
spelling | pubmed-92781182022-07-14 Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3 Wu, Qiong Zhang, Lu Xu, Xiazhen Zhang, Yi Shi, Jiajian Lin, Xu Chen, Wannan J Virol Virus-Cell Interactions Hepatitis B virus (HBV)-related hepatocellular carcinoma (HCC) is the sixth most common cancer worldwide, and the viral X protein (HBx) is an etiological factor in HCC development. HBx is a high-turnover protein, but knowledge of the role of deubiquitinating enzymes (DUBs) in maintaining HBx homeostasis is very limited. We used a 74-DUB library-based yeast two-hybrid assay and determined that a novel DUB, valosin-containing protein-interacting protein 1 (VCPIP1), interacted with HBx. VCPIP1 and its C-terminal amino acids 863 to 1221 upregulated the HBx protein expression, with or without HBV infection. Mechanistically, VCPIP1 stabilized HBx protein through a ubiquitin-independent pathway, which was validated by the HBx ubiquitination site mutant plasmid. Coimmunoprecipitation assays demonstrated the potency of VCPIP1 in recruiting 26S proteasome regulatory subunit 6A (PSMC3) and forming a ternary complex with HBx through mutual interaction. In vitro, purified His-tagged PSMC3 protein rescued HBx degradation induced by the 20S proteasome, and in vivo VCPIP1 synergized the mechanism. Functionally, HBx specifically binding to VCPIP1 significantly enhanced the transcriptional transactivation of HBx by activating NF-κB, AP-1, and SP-1 and inhibited hepatoma cell clonogenicity in Huh7 and HepG2 cells. Moreover, we further demonstrated that overexpression of VCPIP1 significantly affected the HBV covalently closed circular DNA (cccDNA) transcription in HBV-infected HepG2-NTCP cells. Altogether, our results indicate a novel mechanism by which VCPIP1 recruits PSMC3 to bind with HBx, stabilizing it in a ubiquitin-independent manner, which might be critical for developing DUB inhibitors in the future. IMPORTANCE HBx is a multifunctional viral oncoprotein that plays an essential role in the viral life cycle and hepatocarcinogenesis. HBx degradation occurs through the ubiquitin-proteasome system (UPS). However, whether novel compartments of the DUBs in the UPS also act in regulating HBx stability is not fully understood. Here, for the first time, we defined VCPIP1 as a novel DUB for preventing HBx degradation by the 20S proteasome in a ubiquitin-independent manner. PSMC3, encoding the 26S proteasome regulatory subunit, directly stabilized HBx through physical binding instead of a common approach in protein degradation, serving as the key downstream effector of VCPIP1 on HBx. Therefore, the ternary binding pattern between VCPIP1, HBx, and PSMC3 is initiated for the first time, which eventually promotes HBx stability and its functions. Our findings provide novel insights into host-virus cross talk by targeting DUBs in the UPS. American Society for Microbiology 2022-06-13 /pmc/articles/PMC9278118/ /pubmed/35695579 http://dx.doi.org/10.1128/jvi.00611-22 Text en Copyright © 2022 Wu et al. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license (https://creativecommons.org/licenses/by/4.0/) . |
spellingShingle | Virus-Cell Interactions Wu, Qiong Zhang, Lu Xu, Xiazhen Zhang, Yi Shi, Jiajian Lin, Xu Chen, Wannan Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3 |
title | Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3 |
title_full | Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3 |
title_fullStr | Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3 |
title_full_unstemmed | Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3 |
title_short | Hepatitis B Virus X Protein Is Stabilized by the Deubiquitinating Enzyme VCPIP1 in a Ubiquitin-Independent Manner by Recruiting the 26S Proteasome Subunit PSMC3 |
title_sort | hepatitis b virus x protein is stabilized by the deubiquitinating enzyme vcpip1 in a ubiquitin-independent manner by recruiting the 26s proteasome subunit psmc3 |
topic | Virus-Cell Interactions |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278118/ https://www.ncbi.nlm.nih.gov/pubmed/35695579 http://dx.doi.org/10.1128/jvi.00611-22 |
work_keys_str_mv | AT wuqiong hepatitisbvirusxproteinisstabilizedbythedeubiquitinatingenzymevcpip1inaubiquitinindependentmannerbyrecruitingthe26sproteasomesubunitpsmc3 AT zhanglu hepatitisbvirusxproteinisstabilizedbythedeubiquitinatingenzymevcpip1inaubiquitinindependentmannerbyrecruitingthe26sproteasomesubunitpsmc3 AT xuxiazhen hepatitisbvirusxproteinisstabilizedbythedeubiquitinatingenzymevcpip1inaubiquitinindependentmannerbyrecruitingthe26sproteasomesubunitpsmc3 AT zhangyi hepatitisbvirusxproteinisstabilizedbythedeubiquitinatingenzymevcpip1inaubiquitinindependentmannerbyrecruitingthe26sproteasomesubunitpsmc3 AT shijiajian hepatitisbvirusxproteinisstabilizedbythedeubiquitinatingenzymevcpip1inaubiquitinindependentmannerbyrecruitingthe26sproteasomesubunitpsmc3 AT linxu hepatitisbvirusxproteinisstabilizedbythedeubiquitinatingenzymevcpip1inaubiquitinindependentmannerbyrecruitingthe26sproteasomesubunitpsmc3 AT chenwannan hepatitisbvirusxproteinisstabilizedbythedeubiquitinatingenzymevcpip1inaubiquitinindependentmannerbyrecruitingthe26sproteasomesubunitpsmc3 |