Cargando…

Using Artificial Intelligence Assisted Learning Technology on Augmented Reality-Based Manufacture Workflow

The manufacturing process is defined by the synchronous matching and mutual support of the event logic and the task context, so that the work task can be completed perfectly, by executing each step of the manufacturing process. However, during the manufacturing process of the traditional production...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Mingchao, Chen, Yuqiang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278276/
https://www.ncbi.nlm.nih.gov/pubmed/35846600
http://dx.doi.org/10.3389/fpsyg.2022.859324
Descripción
Sumario:The manufacturing process is defined by the synchronous matching and mutual support of the event logic and the task context, so that the work task can be completed perfectly, by executing each step of the manufacturing process. However, during the manufacturing process of the traditional production environment, on-site personnel are often faced with the situation that on-site advice is required, due to a lack of experience or knowledge. Therefore, the function of the manufacturing process should be more closely connected with the workers and tasks. To improve the manufacturing efficiency and reduce the error rate, this research proposes a set of manufacturing work knowledge frameworks, to integrate the intelligent assisted learning system into the manufacturing process. Through Augmented Reality (AR) technology, object recognition technology is used to identify the components within the line of sight, and the assembly steps are presented visually. During the manufacturing process, the system can still feedback to the user in animation, so as to achieve the function equivalent to on-the-spot guidance and assistance when a particular problem is solved by a specialist. Research experiments show that the operation of this intelligent assisted learning interface can more quickly recognize how the manufacturing process works and can solve problems, which greatly resolves the issue of personnel with insufficient experience and knowledge.