Cargando…
Probabilistic Pocket Druggability Prediction via One-Class Learning
The choice of target pocket is a key step in a drug discovery campaign. This step can be supported by in silico druggability prediction. In the literature, druggability prediction is often approached as a two-class classification task that distinguishes between druggable and non-druggable (or less d...
Autores principales: | Aguti, Riccardo, Gardini, Erika, Bertazzo, Martina, Decherchi, Sergio, Cavalli, Andrea |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278401/ https://www.ncbi.nlm.nih.gov/pubmed/35847005 http://dx.doi.org/10.3389/fphar.2022.870479 |
Ejemplares similares
-
Machine Learning and Enhanced Sampling Simulations
for Computing the Potential of Mean Force and Standard Binding Free
Energy
por: Bertazzo, Martina, et al.
Publicado: (2021) -
Druggable Transient Pockets in Protein Kinases
por: Umezawa, Koji, et al.
Publicado: (2021) -
Where are the boundaries? Automated pocket detection for druggability studies
por: Volkamer, Andrea, et al.
Publicado: (2010) -
The Impact of the Secondary Binding Pocket on the Pharmacology of Class A GPCRs
por: Egyed, Attila, et al.
Publicado: (2022) -
Molecular Recognition by Gold Nanoparticle-Based Receptors
as Defined through Surface Morphology and Pockets Fingerprint
por: Riccardi, Laura, et al.
Publicado: (2021)