Cargando…
Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level
Sepsis is a life-threatening clinical condition responsible for approximately 11 million deaths worldwide. Rapid and accurate identification of pathogenic bacteria and its antimicrobial susceptibility play a critical role in reducing the morbidity and mortality rates related to sepsis. Raman and inf...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Royal Society of Chemistry
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278432/ https://www.ncbi.nlm.nih.gov/pubmed/35919437 http://dx.doi.org/10.1039/d2sc02493d |
_version_ | 1784746185106391040 |
---|---|
author | Lima, Cassio Ahmed, Shwan Xu, Yun Muhamadali, Howbeer Parry, Christopher McGalliard, Rachel J. Carrol, Enitan D. Goodacre, Royston |
author_facet | Lima, Cassio Ahmed, Shwan Xu, Yun Muhamadali, Howbeer Parry, Christopher McGalliard, Rachel J. Carrol, Enitan D. Goodacre, Royston |
author_sort | Lima, Cassio |
collection | PubMed |
description | Sepsis is a life-threatening clinical condition responsible for approximately 11 million deaths worldwide. Rapid and accurate identification of pathogenic bacteria and its antimicrobial susceptibility play a critical role in reducing the morbidity and mortality rates related to sepsis. Raman and infrared spectroscopies have great potential to be used as diagnostic tools for rapid and culture-free detection of bacterial infections. Despite numerous reports using both methods to analyse bacterial samples, there is to date no study collecting both Raman and infrared signatures from clinical samples simultaneously due to instrument incompatibilities. Here, we report for the first time the use of an emerging technology that provides infrared signatures via optical photothermal infrared (O-PTIR) spectroscopy and Raman spectra simultaneously. We use this approach to analyse 12 bacterial clinical isolates including six isolates of Gram-negative and six Gram-positive bacteria commonly associated with bloodstream infection in humans. To benchmark the single cell spectra obtained by O-PTIR spectroscopy, infrared signatures were also collected from bulk samples via both FTIR and O-PTIR spectroscopies. Our findings showed significant similarity and high reproducibility in the infrared signatures obtained by all three approaches, including similar discrimination patterns when subjected to clustering algorithms. Principal component analysis (PCA) showed that O-PTIR and Raman data acquired simultaneously from bulk bacterial isolates displayed different clustering patterns due to the ability of both methods to probe metabolites produced by bacteria. By contrast, signatures of microbial pigments were identified in Raman spectra, providing complementary and orthogonal information compared to infrared, which may be advantageous as it has been demonstrated that certain pigments play an important role in bacterial virulence. We found that infrared spectroscopy showed higher sensitivity than Raman for the analysis of individual cells. Despite the different patterns obtained by using Raman and infrared spectral data as input for clustering algorithms, our findings showed high data reproducibility in both approaches as the biological replicates from each bacterial strain clustered together. Overall, we show that Raman and infrared spectroscopy offer both advantages and disadvantages and, therefore, having both techniques combined in one single technology is a powerful tool with promising applications in clinical microbiology. |
format | Online Article Text |
id | pubmed-9278432 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | The Royal Society of Chemistry |
record_format | MEDLINE/PubMed |
spelling | pubmed-92784322022-08-01 Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level Lima, Cassio Ahmed, Shwan Xu, Yun Muhamadali, Howbeer Parry, Christopher McGalliard, Rachel J. Carrol, Enitan D. Goodacre, Royston Chem Sci Chemistry Sepsis is a life-threatening clinical condition responsible for approximately 11 million deaths worldwide. Rapid and accurate identification of pathogenic bacteria and its antimicrobial susceptibility play a critical role in reducing the morbidity and mortality rates related to sepsis. Raman and infrared spectroscopies have great potential to be used as diagnostic tools for rapid and culture-free detection of bacterial infections. Despite numerous reports using both methods to analyse bacterial samples, there is to date no study collecting both Raman and infrared signatures from clinical samples simultaneously due to instrument incompatibilities. Here, we report for the first time the use of an emerging technology that provides infrared signatures via optical photothermal infrared (O-PTIR) spectroscopy and Raman spectra simultaneously. We use this approach to analyse 12 bacterial clinical isolates including six isolates of Gram-negative and six Gram-positive bacteria commonly associated with bloodstream infection in humans. To benchmark the single cell spectra obtained by O-PTIR spectroscopy, infrared signatures were also collected from bulk samples via both FTIR and O-PTIR spectroscopies. Our findings showed significant similarity and high reproducibility in the infrared signatures obtained by all three approaches, including similar discrimination patterns when subjected to clustering algorithms. Principal component analysis (PCA) showed that O-PTIR and Raman data acquired simultaneously from bulk bacterial isolates displayed different clustering patterns due to the ability of both methods to probe metabolites produced by bacteria. By contrast, signatures of microbial pigments were identified in Raman spectra, providing complementary and orthogonal information compared to infrared, which may be advantageous as it has been demonstrated that certain pigments play an important role in bacterial virulence. We found that infrared spectroscopy showed higher sensitivity than Raman for the analysis of individual cells. Despite the different patterns obtained by using Raman and infrared spectral data as input for clustering algorithms, our findings showed high data reproducibility in both approaches as the biological replicates from each bacterial strain clustered together. Overall, we show that Raman and infrared spectroscopy offer both advantages and disadvantages and, therefore, having both techniques combined in one single technology is a powerful tool with promising applications in clinical microbiology. The Royal Society of Chemistry 2022-06-29 /pmc/articles/PMC9278432/ /pubmed/35919437 http://dx.doi.org/10.1039/d2sc02493d Text en This journal is © The Royal Society of Chemistry https://creativecommons.org/licenses/by/3.0/ |
spellingShingle | Chemistry Lima, Cassio Ahmed, Shwan Xu, Yun Muhamadali, Howbeer Parry, Christopher McGalliard, Rachel J. Carrol, Enitan D. Goodacre, Royston Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level |
title | Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level |
title_full | Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level |
title_fullStr | Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level |
title_full_unstemmed | Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level |
title_short | Simultaneous Raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level |
title_sort | simultaneous raman and infrared spectroscopy: a novel combination for studying bacterial infections at the single cell level |
topic | Chemistry |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278432/ https://www.ncbi.nlm.nih.gov/pubmed/35919437 http://dx.doi.org/10.1039/d2sc02493d |
work_keys_str_mv | AT limacassio simultaneousramanandinfraredspectroscopyanovelcombinationforstudyingbacterialinfectionsatthesinglecelllevel AT ahmedshwan simultaneousramanandinfraredspectroscopyanovelcombinationforstudyingbacterialinfectionsatthesinglecelllevel AT xuyun simultaneousramanandinfraredspectroscopyanovelcombinationforstudyingbacterialinfectionsatthesinglecelllevel AT muhamadalihowbeer simultaneousramanandinfraredspectroscopyanovelcombinationforstudyingbacterialinfectionsatthesinglecelllevel AT parrychristopher simultaneousramanandinfraredspectroscopyanovelcombinationforstudyingbacterialinfectionsatthesinglecelllevel AT mcgalliardrachelj simultaneousramanandinfraredspectroscopyanovelcombinationforstudyingbacterialinfectionsatthesinglecelllevel AT carrolenitand simultaneousramanandinfraredspectroscopyanovelcombinationforstudyingbacterialinfectionsatthesinglecelllevel AT goodacreroyston simultaneousramanandinfraredspectroscopyanovelcombinationforstudyingbacterialinfectionsatthesinglecelllevel |