Cargando…
Deciphering the language of antibodies using self-supervised learning
An individual’s B cell receptor (BCR) repertoire encodes information about past immune responses and potential for future disease protection. Deciphering the information stored in BCR sequence datasets will transform our understanding of disease and enable discovery of novel diagnostics and antibody...
Autores principales: | Leem, Jinwoo, Mitchell, Laura S., Farmery, James H.R., Barton, Justin, Galson, Jacob D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278498/ https://www.ncbi.nlm.nih.gov/pubmed/35845836 http://dx.doi.org/10.1016/j.patter.2022.100513 |
Ejemplares similares
-
Structural modeling of antibody variable regions using deep learning—progress and perspectives on drug discovery
por: Jaszczyszyn, Igor, et al.
Publicado: (2023) -
AbDiver: a tool to explore the natural antibody landscape to aid therapeutic design
por: Młokosiewicz, Jakub, et al.
Publicado: (2022) -
Structurally Mapping Antibody Repertoires
por: Krawczyk, Konrad, et al.
Publicado: (2018) -
Autoregressive Affective Language Forecasting: A Self-Supervised Task
por: Matero, Matthew, et al.
Publicado: (2020) -
A self-supervised contrastive learning approach for whole slide image representation in digital pathology
por: Fashi, Parsa Ashrafi, et al.
Publicado: (2022)