Cargando…

A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks

BACKGROUND AND AIMS: Seattle protocol biopsies for Barrett's Esophagus (BE) surveillance are labour intensive with low compliance. Dysplasia detection rates vary, leading to missed lesions. This can potentially be offset with computer aided detection. We have developed convolutional neural netw...

Descripción completa

Detalles Bibliográficos
Autores principales: Hussein, Mohamed, González‐Bueno Puyal, Juana, Lines, David, Sehgal, Vinay, Toth, Daniel, Ahmad, Omer F., Kader, Rawen, Everson, Martin, Lipman, Gideon, Fernandez‐Sordo, Jacobo Ortiz, Ragunath, Krish, Esteban, Jose Miguel, Bisschops, Raf, Banks, Matthew, Haefner, Michael, Mountney, Peter, Stoyanov, Danail, Lovat, Laurence B., Haidry, Rehan
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278593/
https://www.ncbi.nlm.nih.gov/pubmed/35521666
http://dx.doi.org/10.1002/ueg2.12233
_version_ 1784746216245952512
author Hussein, Mohamed
González‐Bueno Puyal, Juana
Lines, David
Sehgal, Vinay
Toth, Daniel
Ahmad, Omer F.
Kader, Rawen
Everson, Martin
Lipman, Gideon
Fernandez‐Sordo, Jacobo Ortiz
Ragunath, Krish
Esteban, Jose Miguel
Bisschops, Raf
Banks, Matthew
Haefner, Michael
Mountney, Peter
Stoyanov, Danail
Lovat, Laurence B.
Haidry, Rehan
author_facet Hussein, Mohamed
González‐Bueno Puyal, Juana
Lines, David
Sehgal, Vinay
Toth, Daniel
Ahmad, Omer F.
Kader, Rawen
Everson, Martin
Lipman, Gideon
Fernandez‐Sordo, Jacobo Ortiz
Ragunath, Krish
Esteban, Jose Miguel
Bisschops, Raf
Banks, Matthew
Haefner, Michael
Mountney, Peter
Stoyanov, Danail
Lovat, Laurence B.
Haidry, Rehan
author_sort Hussein, Mohamed
collection PubMed
description BACKGROUND AND AIMS: Seattle protocol biopsies for Barrett's Esophagus (BE) surveillance are labour intensive with low compliance. Dysplasia detection rates vary, leading to missed lesions. This can potentially be offset with computer aided detection. We have developed convolutional neural networks (CNNs) to identify areas of dysplasia and where to target biopsy. METHODS: 119 Videos were collected in high‐definition white light and optical chromoendoscopy with i‐scan (Pentax Hoya, Japan) imaging in patients with dysplastic and non‐dysplastic BE (NDBE). We trained an indirectly supervised CNN to classify images as dysplastic/non‐dysplastic using whole video annotations to minimise selection bias and maximise accuracy. The CNN was trained using 148,936 video frames (31 dysplastic patients, 31 NDBE, two normal esophagus), validated on 25,161 images from 11 patient videos and tested on 264 iscan‐1 images from 28 dysplastic and 16 NDBE patients which included expert delineations. To localise targeted biopsies/delineations, a second directly supervised CNN was generated based on expert delineations of 94 dysplastic images from 30 patients. This was tested on 86 i‐scan one images from 28 dysplastic patients. FINDINGS: The indirectly supervised CNN achieved a per image sensitivity in the test set of 91%, specificity 79%, area under receiver operator curve of 93% to detect dysplasia. Per‐lesion sensitivity was 100%. Mean assessment speed was 48 frames per second (fps). 97% of targeted biopsy predictions matched expert and histological assessment at 56 fps. The artificial intelligence system performed better than six endoscopists. INTERPRETATION: Our CNNs classify and localise dysplastic Barrett's Esophagus potentially supporting endoscopists during surveillance.
format Online
Article
Text
id pubmed-9278593
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-92785932022-07-15 A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks Hussein, Mohamed González‐Bueno Puyal, Juana Lines, David Sehgal, Vinay Toth, Daniel Ahmad, Omer F. Kader, Rawen Everson, Martin Lipman, Gideon Fernandez‐Sordo, Jacobo Ortiz Ragunath, Krish Esteban, Jose Miguel Bisschops, Raf Banks, Matthew Haefner, Michael Mountney, Peter Stoyanov, Danail Lovat, Laurence B. Haidry, Rehan United European Gastroenterol J Endoscopy BACKGROUND AND AIMS: Seattle protocol biopsies for Barrett's Esophagus (BE) surveillance are labour intensive with low compliance. Dysplasia detection rates vary, leading to missed lesions. This can potentially be offset with computer aided detection. We have developed convolutional neural networks (CNNs) to identify areas of dysplasia and where to target biopsy. METHODS: 119 Videos were collected in high‐definition white light and optical chromoendoscopy with i‐scan (Pentax Hoya, Japan) imaging in patients with dysplastic and non‐dysplastic BE (NDBE). We trained an indirectly supervised CNN to classify images as dysplastic/non‐dysplastic using whole video annotations to minimise selection bias and maximise accuracy. The CNN was trained using 148,936 video frames (31 dysplastic patients, 31 NDBE, two normal esophagus), validated on 25,161 images from 11 patient videos and tested on 264 iscan‐1 images from 28 dysplastic and 16 NDBE patients which included expert delineations. To localise targeted biopsies/delineations, a second directly supervised CNN was generated based on expert delineations of 94 dysplastic images from 30 patients. This was tested on 86 i‐scan one images from 28 dysplastic patients. FINDINGS: The indirectly supervised CNN achieved a per image sensitivity in the test set of 91%, specificity 79%, area under receiver operator curve of 93% to detect dysplasia. Per‐lesion sensitivity was 100%. Mean assessment speed was 48 frames per second (fps). 97% of targeted biopsy predictions matched expert and histological assessment at 56 fps. The artificial intelligence system performed better than six endoscopists. INTERPRETATION: Our CNNs classify and localise dysplastic Barrett's Esophagus potentially supporting endoscopists during surveillance. John Wiley and Sons Inc. 2022-05-06 /pmc/articles/PMC9278593/ /pubmed/35521666 http://dx.doi.org/10.1002/ueg2.12233 Text en © 2022 The Authors. United European Gastroenterology Journal published by Wiley Periodicals LLC on behalf of United European Gastroenterology. https://creativecommons.org/licenses/by/4.0/This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ (https://creativecommons.org/licenses/by/4.0/) License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Endoscopy
Hussein, Mohamed
González‐Bueno Puyal, Juana
Lines, David
Sehgal, Vinay
Toth, Daniel
Ahmad, Omer F.
Kader, Rawen
Everson, Martin
Lipman, Gideon
Fernandez‐Sordo, Jacobo Ortiz
Ragunath, Krish
Esteban, Jose Miguel
Bisschops, Raf
Banks, Matthew
Haefner, Michael
Mountney, Peter
Stoyanov, Danail
Lovat, Laurence B.
Haidry, Rehan
A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks
title A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks
title_full A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks
title_fullStr A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks
title_full_unstemmed A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks
title_short A new artificial intelligence system successfully detects and localises early neoplasia in Barrett's esophagus by using convolutional neural networks
title_sort new artificial intelligence system successfully detects and localises early neoplasia in barrett's esophagus by using convolutional neural networks
topic Endoscopy
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278593/
https://www.ncbi.nlm.nih.gov/pubmed/35521666
http://dx.doi.org/10.1002/ueg2.12233
work_keys_str_mv AT husseinmohamed anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT gonzalezbuenopuyaljuana anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT linesdavid anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT sehgalvinay anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT tothdaniel anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT ahmadomerf anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT kaderrawen anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT eversonmartin anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT lipmangideon anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT fernandezsordojacoboortiz anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT ragunathkrish anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT estebanjosemiguel anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT bisschopsraf anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT banksmatthew anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT haefnermichael anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT mountneypeter anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT stoyanovdanail anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT lovatlaurenceb anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT haidryrehan anewartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT husseinmohamed newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT gonzalezbuenopuyaljuana newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT linesdavid newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT sehgalvinay newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT tothdaniel newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT ahmadomerf newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT kaderrawen newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT eversonmartin newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT lipmangideon newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT fernandezsordojacoboortiz newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT ragunathkrish newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT estebanjosemiguel newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT bisschopsraf newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT banksmatthew newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT haefnermichael newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT mountneypeter newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT stoyanovdanail newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT lovatlaurenceb newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks
AT haidryrehan newartificialintelligencesystemsuccessfullydetectsandlocalisesearlyneoplasiainbarrettsesophagusbyusingconvolutionalneuralnetworks