Cargando…

A Chirality-Based Quantum Leap

[Image: see text] There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selec...

Descripción completa

Detalles Bibliográficos
Autores principales: Aiello, Clarice D., Abendroth, John M., Abbas, Muneer, Afanasev, Andrei, Agarwal, Shivang, Banerjee, Amartya S., Beratan, David N., Belling, Jason N., Berche, Bertrand, Botana, Antia, Caram, Justin R., Celardo, Giuseppe Luca, Cuniberti, Gianaurelio, Garcia-Etxarri, Aitzol, Dianat, Arezoo, Diez-Perez, Ismael, Guo, Yuqi, Gutierrez, Rafael, Herrmann, Carmen, Hihath, Joshua, Kale, Suneet, Kurian, Philip, Lai, Ying-Cheng, Liu, Tianhan, Lopez, Alexander, Medina, Ernesto, Mujica, Vladimiro, Naaman, Ron, Noormandipour, Mohammadreza, Palma, Julio L., Paltiel, Yossi, Petuskey, William, Ribeiro-Silva, João Carlos, Saenz, Juan José, Santos, Elton J. G., Solyanik-Gorgone, Maria, Sorger, Volker J., Stemer, Dominik M., Ugalde, Jesus M., Valdes-Curiel, Ana, Varela, Solmar, Waldeck, David H., Wasielewski, Michael R., Weiss, Paul S., Zacharias, Helmut, Wang, Qing Hua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2022
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278663/
https://www.ncbi.nlm.nih.gov/pubmed/35318848
http://dx.doi.org/10.1021/acsnano.1c01347
_version_ 1784746230304210944
author Aiello, Clarice D.
Abendroth, John M.
Abbas, Muneer
Afanasev, Andrei
Agarwal, Shivang
Banerjee, Amartya S.
Beratan, David N.
Belling, Jason N.
Berche, Bertrand
Botana, Antia
Caram, Justin R.
Celardo, Giuseppe Luca
Cuniberti, Gianaurelio
Garcia-Etxarri, Aitzol
Dianat, Arezoo
Diez-Perez, Ismael
Guo, Yuqi
Gutierrez, Rafael
Herrmann, Carmen
Hihath, Joshua
Kale, Suneet
Kurian, Philip
Lai, Ying-Cheng
Liu, Tianhan
Lopez, Alexander
Medina, Ernesto
Mujica, Vladimiro
Naaman, Ron
Noormandipour, Mohammadreza
Palma, Julio L.
Paltiel, Yossi
Petuskey, William
Ribeiro-Silva, João Carlos
Saenz, Juan José
Santos, Elton J. G.
Solyanik-Gorgone, Maria
Sorger, Volker J.
Stemer, Dominik M.
Ugalde, Jesus M.
Valdes-Curiel, Ana
Varela, Solmar
Waldeck, David H.
Wasielewski, Michael R.
Weiss, Paul S.
Zacharias, Helmut
Wang, Qing Hua
author_facet Aiello, Clarice D.
Abendroth, John M.
Abbas, Muneer
Afanasev, Andrei
Agarwal, Shivang
Banerjee, Amartya S.
Beratan, David N.
Belling, Jason N.
Berche, Bertrand
Botana, Antia
Caram, Justin R.
Celardo, Giuseppe Luca
Cuniberti, Gianaurelio
Garcia-Etxarri, Aitzol
Dianat, Arezoo
Diez-Perez, Ismael
Guo, Yuqi
Gutierrez, Rafael
Herrmann, Carmen
Hihath, Joshua
Kale, Suneet
Kurian, Philip
Lai, Ying-Cheng
Liu, Tianhan
Lopez, Alexander
Medina, Ernesto
Mujica, Vladimiro
Naaman, Ron
Noormandipour, Mohammadreza
Palma, Julio L.
Paltiel, Yossi
Petuskey, William
Ribeiro-Silva, João Carlos
Saenz, Juan José
Santos, Elton J. G.
Solyanik-Gorgone, Maria
Sorger, Volker J.
Stemer, Dominik M.
Ugalde, Jesus M.
Valdes-Curiel, Ana
Varela, Solmar
Waldeck, David H.
Wasielewski, Michael R.
Weiss, Paul S.
Zacharias, Helmut
Wang, Qing Hua
author_sort Aiello, Clarice D.
collection PubMed
description [Image: see text] There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light–matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral–optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light–matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies.
format Online
Article
Text
id pubmed-9278663
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Chemical Society
record_format MEDLINE/PubMed
spelling pubmed-92786632022-07-14 A Chirality-Based Quantum Leap Aiello, Clarice D. Abendroth, John M. Abbas, Muneer Afanasev, Andrei Agarwal, Shivang Banerjee, Amartya S. Beratan, David N. Belling, Jason N. Berche, Bertrand Botana, Antia Caram, Justin R. Celardo, Giuseppe Luca Cuniberti, Gianaurelio Garcia-Etxarri, Aitzol Dianat, Arezoo Diez-Perez, Ismael Guo, Yuqi Gutierrez, Rafael Herrmann, Carmen Hihath, Joshua Kale, Suneet Kurian, Philip Lai, Ying-Cheng Liu, Tianhan Lopez, Alexander Medina, Ernesto Mujica, Vladimiro Naaman, Ron Noormandipour, Mohammadreza Palma, Julio L. Paltiel, Yossi Petuskey, William Ribeiro-Silva, João Carlos Saenz, Juan José Santos, Elton J. G. Solyanik-Gorgone, Maria Sorger, Volker J. Stemer, Dominik M. Ugalde, Jesus M. Valdes-Curiel, Ana Varela, Solmar Waldeck, David H. Wasielewski, Michael R. Weiss, Paul S. Zacharias, Helmut Wang, Qing Hua ACS Nano [Image: see text] There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light–matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral–optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light–matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies. American Chemical Society 2022-03-23 2022-04-26 /pmc/articles/PMC9278663/ /pubmed/35318848 http://dx.doi.org/10.1021/acsnano.1c01347 Text en © 2022 American Chemical Society https://pubs.acs.org/page/policy/termsofuse.htmlMade available for a limited time for personal research and study only License (https://pubs.acs.org/page/policy/termsofuse.html) .
spellingShingle Aiello, Clarice D.
Abendroth, John M.
Abbas, Muneer
Afanasev, Andrei
Agarwal, Shivang
Banerjee, Amartya S.
Beratan, David N.
Belling, Jason N.
Berche, Bertrand
Botana, Antia
Caram, Justin R.
Celardo, Giuseppe Luca
Cuniberti, Gianaurelio
Garcia-Etxarri, Aitzol
Dianat, Arezoo
Diez-Perez, Ismael
Guo, Yuqi
Gutierrez, Rafael
Herrmann, Carmen
Hihath, Joshua
Kale, Suneet
Kurian, Philip
Lai, Ying-Cheng
Liu, Tianhan
Lopez, Alexander
Medina, Ernesto
Mujica, Vladimiro
Naaman, Ron
Noormandipour, Mohammadreza
Palma, Julio L.
Paltiel, Yossi
Petuskey, William
Ribeiro-Silva, João Carlos
Saenz, Juan José
Santos, Elton J. G.
Solyanik-Gorgone, Maria
Sorger, Volker J.
Stemer, Dominik M.
Ugalde, Jesus M.
Valdes-Curiel, Ana
Varela, Solmar
Waldeck, David H.
Wasielewski, Michael R.
Weiss, Paul S.
Zacharias, Helmut
Wang, Qing Hua
A Chirality-Based Quantum Leap
title A Chirality-Based Quantum Leap
title_full A Chirality-Based Quantum Leap
title_fullStr A Chirality-Based Quantum Leap
title_full_unstemmed A Chirality-Based Quantum Leap
title_short A Chirality-Based Quantum Leap
title_sort a chirality-based quantum leap
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278663/
https://www.ncbi.nlm.nih.gov/pubmed/35318848
http://dx.doi.org/10.1021/acsnano.1c01347
work_keys_str_mv AT aielloclariced achiralitybasedquantumleap
AT abendrothjohnm achiralitybasedquantumleap
AT abbasmuneer achiralitybasedquantumleap
AT afanasevandrei achiralitybasedquantumleap
AT agarwalshivang achiralitybasedquantumleap
AT banerjeeamartyas achiralitybasedquantumleap
AT beratandavidn achiralitybasedquantumleap
AT bellingjasonn achiralitybasedquantumleap
AT berchebertrand achiralitybasedquantumleap
AT botanaantia achiralitybasedquantumleap
AT caramjustinr achiralitybasedquantumleap
AT celardogiuseppeluca achiralitybasedquantumleap
AT cunibertigianaurelio achiralitybasedquantumleap
AT garciaetxarriaitzol achiralitybasedquantumleap
AT dianatarezoo achiralitybasedquantumleap
AT diezperezismael achiralitybasedquantumleap
AT guoyuqi achiralitybasedquantumleap
AT gutierrezrafael achiralitybasedquantumleap
AT herrmanncarmen achiralitybasedquantumleap
AT hihathjoshua achiralitybasedquantumleap
AT kalesuneet achiralitybasedquantumleap
AT kurianphilip achiralitybasedquantumleap
AT laiyingcheng achiralitybasedquantumleap
AT liutianhan achiralitybasedquantumleap
AT lopezalexander achiralitybasedquantumleap
AT medinaernesto achiralitybasedquantumleap
AT mujicavladimiro achiralitybasedquantumleap
AT naamanron achiralitybasedquantumleap
AT noormandipourmohammadreza achiralitybasedquantumleap
AT palmajuliol achiralitybasedquantumleap
AT paltielyossi achiralitybasedquantumleap
AT petuskeywilliam achiralitybasedquantumleap
AT ribeirosilvajoaocarlos achiralitybasedquantumleap
AT saenzjuanjose achiralitybasedquantumleap
AT santoseltonjg achiralitybasedquantumleap
AT solyanikgorgonemaria achiralitybasedquantumleap
AT sorgervolkerj achiralitybasedquantumleap
AT stemerdominikm achiralitybasedquantumleap
AT ugaldejesusm achiralitybasedquantumleap
AT valdescurielana achiralitybasedquantumleap
AT varelasolmar achiralitybasedquantumleap
AT waldeckdavidh achiralitybasedquantumleap
AT wasielewskimichaelr achiralitybasedquantumleap
AT weisspauls achiralitybasedquantumleap
AT zachariashelmut achiralitybasedquantumleap
AT wangqinghua achiralitybasedquantumleap