Cargando…
A Chirality-Based Quantum Leap
[Image: see text] There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selec...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278663/ https://www.ncbi.nlm.nih.gov/pubmed/35318848 http://dx.doi.org/10.1021/acsnano.1c01347 |
_version_ | 1784746230304210944 |
---|---|
author | Aiello, Clarice D. Abendroth, John M. Abbas, Muneer Afanasev, Andrei Agarwal, Shivang Banerjee, Amartya S. Beratan, David N. Belling, Jason N. Berche, Bertrand Botana, Antia Caram, Justin R. Celardo, Giuseppe Luca Cuniberti, Gianaurelio Garcia-Etxarri, Aitzol Dianat, Arezoo Diez-Perez, Ismael Guo, Yuqi Gutierrez, Rafael Herrmann, Carmen Hihath, Joshua Kale, Suneet Kurian, Philip Lai, Ying-Cheng Liu, Tianhan Lopez, Alexander Medina, Ernesto Mujica, Vladimiro Naaman, Ron Noormandipour, Mohammadreza Palma, Julio L. Paltiel, Yossi Petuskey, William Ribeiro-Silva, João Carlos Saenz, Juan José Santos, Elton J. G. Solyanik-Gorgone, Maria Sorger, Volker J. Stemer, Dominik M. Ugalde, Jesus M. Valdes-Curiel, Ana Varela, Solmar Waldeck, David H. Wasielewski, Michael R. Weiss, Paul S. Zacharias, Helmut Wang, Qing Hua |
author_facet | Aiello, Clarice D. Abendroth, John M. Abbas, Muneer Afanasev, Andrei Agarwal, Shivang Banerjee, Amartya S. Beratan, David N. Belling, Jason N. Berche, Bertrand Botana, Antia Caram, Justin R. Celardo, Giuseppe Luca Cuniberti, Gianaurelio Garcia-Etxarri, Aitzol Dianat, Arezoo Diez-Perez, Ismael Guo, Yuqi Gutierrez, Rafael Herrmann, Carmen Hihath, Joshua Kale, Suneet Kurian, Philip Lai, Ying-Cheng Liu, Tianhan Lopez, Alexander Medina, Ernesto Mujica, Vladimiro Naaman, Ron Noormandipour, Mohammadreza Palma, Julio L. Paltiel, Yossi Petuskey, William Ribeiro-Silva, João Carlos Saenz, Juan José Santos, Elton J. G. Solyanik-Gorgone, Maria Sorger, Volker J. Stemer, Dominik M. Ugalde, Jesus M. Valdes-Curiel, Ana Varela, Solmar Waldeck, David H. Wasielewski, Michael R. Weiss, Paul S. Zacharias, Helmut Wang, Qing Hua |
author_sort | Aiello, Clarice D. |
collection | PubMed |
description | [Image: see text] There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light–matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral–optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light–matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies. |
format | Online Article Text |
id | pubmed-9278663 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92786632022-07-14 A Chirality-Based Quantum Leap Aiello, Clarice D. Abendroth, John M. Abbas, Muneer Afanasev, Andrei Agarwal, Shivang Banerjee, Amartya S. Beratan, David N. Belling, Jason N. Berche, Bertrand Botana, Antia Caram, Justin R. Celardo, Giuseppe Luca Cuniberti, Gianaurelio Garcia-Etxarri, Aitzol Dianat, Arezoo Diez-Perez, Ismael Guo, Yuqi Gutierrez, Rafael Herrmann, Carmen Hihath, Joshua Kale, Suneet Kurian, Philip Lai, Ying-Cheng Liu, Tianhan Lopez, Alexander Medina, Ernesto Mujica, Vladimiro Naaman, Ron Noormandipour, Mohammadreza Palma, Julio L. Paltiel, Yossi Petuskey, William Ribeiro-Silva, João Carlos Saenz, Juan José Santos, Elton J. G. Solyanik-Gorgone, Maria Sorger, Volker J. Stemer, Dominik M. Ugalde, Jesus M. Valdes-Curiel, Ana Varela, Solmar Waldeck, David H. Wasielewski, Michael R. Weiss, Paul S. Zacharias, Helmut Wang, Qing Hua ACS Nano [Image: see text] There is increasing interest in the study of chiral degrees of freedom occurring in matter and in electromagnetic fields. Opportunities in quantum sciences will likely exploit two main areas that are the focus of this Review: (1) recent observations of the chiral-induced spin selectivity (CISS) effect in chiral molecules and engineered nanomaterials and (2) rapidly evolving nanophotonic strategies designed to amplify chiral light–matter interactions. On the one hand, the CISS effect underpins the observation that charge transport through nanoscopic chiral structures favors a particular electronic spin orientation, resulting in large room-temperature spin polarizations. Observations of the CISS effect suggest opportunities for spin control and for the design and fabrication of room-temperature quantum devices from the bottom up, with atomic-scale precision and molecular modularity. On the other hand, chiral–optical effects that depend on both spin- and orbital-angular momentum of photons could offer key advantages in all-optical and quantum information technologies. In particular, amplification of these chiral light–matter interactions using rationally designed plasmonic and dielectric nanomaterials provide approaches to manipulate light intensity, polarization, and phase in confined nanoscale geometries. Any technology that relies on optimal charge transport, or optical control and readout, including quantum devices for logic, sensing, and storage, may benefit from chiral quantum properties. These properties can be theoretically and experimentally investigated from a quantum information perspective, which has not yet been fully developed. There are uncharted implications for the quantum sciences once chiral couplings can be engineered to control the storage, transduction, and manipulation of quantum information. This forward-looking Review provides a survey of the experimental and theoretical fundamentals of chiral-influenced quantum effects and presents a vision for their possible future roles in enabling room-temperature quantum technologies. American Chemical Society 2022-03-23 2022-04-26 /pmc/articles/PMC9278663/ /pubmed/35318848 http://dx.doi.org/10.1021/acsnano.1c01347 Text en © 2022 American Chemical Society https://pubs.acs.org/page/policy/termsofuse.htmlMade available for a limited time for personal research and study only License (https://pubs.acs.org/page/policy/termsofuse.html) . |
spellingShingle | Aiello, Clarice D. Abendroth, John M. Abbas, Muneer Afanasev, Andrei Agarwal, Shivang Banerjee, Amartya S. Beratan, David N. Belling, Jason N. Berche, Bertrand Botana, Antia Caram, Justin R. Celardo, Giuseppe Luca Cuniberti, Gianaurelio Garcia-Etxarri, Aitzol Dianat, Arezoo Diez-Perez, Ismael Guo, Yuqi Gutierrez, Rafael Herrmann, Carmen Hihath, Joshua Kale, Suneet Kurian, Philip Lai, Ying-Cheng Liu, Tianhan Lopez, Alexander Medina, Ernesto Mujica, Vladimiro Naaman, Ron Noormandipour, Mohammadreza Palma, Julio L. Paltiel, Yossi Petuskey, William Ribeiro-Silva, João Carlos Saenz, Juan José Santos, Elton J. G. Solyanik-Gorgone, Maria Sorger, Volker J. Stemer, Dominik M. Ugalde, Jesus M. Valdes-Curiel, Ana Varela, Solmar Waldeck, David H. Wasielewski, Michael R. Weiss, Paul S. Zacharias, Helmut Wang, Qing Hua A Chirality-Based Quantum Leap |
title | A
Chirality-Based Quantum Leap |
title_full | A
Chirality-Based Quantum Leap |
title_fullStr | A
Chirality-Based Quantum Leap |
title_full_unstemmed | A
Chirality-Based Quantum Leap |
title_short | A
Chirality-Based Quantum Leap |
title_sort | a
chirality-based quantum leap |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278663/ https://www.ncbi.nlm.nih.gov/pubmed/35318848 http://dx.doi.org/10.1021/acsnano.1c01347 |
work_keys_str_mv | AT aielloclariced achiralitybasedquantumleap AT abendrothjohnm achiralitybasedquantumleap AT abbasmuneer achiralitybasedquantumleap AT afanasevandrei achiralitybasedquantumleap AT agarwalshivang achiralitybasedquantumleap AT banerjeeamartyas achiralitybasedquantumleap AT beratandavidn achiralitybasedquantumleap AT bellingjasonn achiralitybasedquantumleap AT berchebertrand achiralitybasedquantumleap AT botanaantia achiralitybasedquantumleap AT caramjustinr achiralitybasedquantumleap AT celardogiuseppeluca achiralitybasedquantumleap AT cunibertigianaurelio achiralitybasedquantumleap AT garciaetxarriaitzol achiralitybasedquantumleap AT dianatarezoo achiralitybasedquantumleap AT diezperezismael achiralitybasedquantumleap AT guoyuqi achiralitybasedquantumleap AT gutierrezrafael achiralitybasedquantumleap AT herrmanncarmen achiralitybasedquantumleap AT hihathjoshua achiralitybasedquantumleap AT kalesuneet achiralitybasedquantumleap AT kurianphilip achiralitybasedquantumleap AT laiyingcheng achiralitybasedquantumleap AT liutianhan achiralitybasedquantumleap AT lopezalexander achiralitybasedquantumleap AT medinaernesto achiralitybasedquantumleap AT mujicavladimiro achiralitybasedquantumleap AT naamanron achiralitybasedquantumleap AT noormandipourmohammadreza achiralitybasedquantumleap AT palmajuliol achiralitybasedquantumleap AT paltielyossi achiralitybasedquantumleap AT petuskeywilliam achiralitybasedquantumleap AT ribeirosilvajoaocarlos achiralitybasedquantumleap AT saenzjuanjose achiralitybasedquantumleap AT santoseltonjg achiralitybasedquantumleap AT solyanikgorgonemaria achiralitybasedquantumleap AT sorgervolkerj achiralitybasedquantumleap AT stemerdominikm achiralitybasedquantumleap AT ugaldejesusm achiralitybasedquantumleap AT valdescurielana achiralitybasedquantumleap AT varelasolmar achiralitybasedquantumleap AT waldeckdavidh achiralitybasedquantumleap AT wasielewskimichaelr achiralitybasedquantumleap AT weisspauls achiralitybasedquantumleap AT zachariashelmut achiralitybasedquantumleap AT wangqinghua achiralitybasedquantumleap |