Cargando…
Machine learning-based estimation of riverine nutrient concentrations and associated uncertainties caused by sampling frequencies
Accurate and sufficient water quality data is essential for watershed management and sustainability. Machine learning models have shown great potentials for estimating water quality with the development of online sensors. However, accurate estimation is challenging because of uncertainties related t...
Autores principales: | Chen, Shengyue, Zhang, Zhenyu, Lin, Juanjuan, Huang, Jinliang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278742/ https://www.ncbi.nlm.nih.gov/pubmed/35830456 http://dx.doi.org/10.1371/journal.pone.0271458 |
Ejemplares similares
-
High frequency UV–Vis sensors estimate error in riverine dissolved organic carbon load estimates from grab sampling
por: Ritson, J. P., et al.
Publicado: (2022) -
Uncertainty analysis of model inputs in riverine water temperature simulations
por: Abdi, Babak, et al.
Publicado: (2021) -
The influence of nutrient enrichment on riverine food web function and stability
por: Canning, Adam D., et al.
Publicado: (2020) -
Nutrient criteria to achieve New Zealand’s riverine macroinvertebrate targets
por: Canning, Adam D., et al.
Publicado: (2021) -
Neglecting uncertainties biases house-elevation decisions to manage riverine flood risks
por: Zarekarizi, Mahkameh, et al.
Publicado: (2020)