Cargando…
Nuclear Norm Regularized Deep Neural Network for EEG-Based Emotion Recognition
Electroencephalography (EEG) based emotion recognition enables machines to perceive users' affective states, which has attracted increasing attention. However, most of the current emotion recognition methods neglect the structural information among different brain regions, which can lead to the...
Autores principales: | Liang, Shuang, Yin, Mingbo, Huang, Yecheng, Dai, Xiubin, Wang, Qiong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278805/ https://www.ncbi.nlm.nih.gov/pubmed/35846606 http://dx.doi.org/10.3389/fpsyg.2022.924793 |
Ejemplares similares
-
Deep Sparse Autoencoder and Recursive Neural Network for EEG Emotion Recognition
por: Li, Qi, et al.
Publicado: (2022) -
Deep learning-based EEG emotion recognition: Current trends and future perspectives
por: Wang, Xiaohu, et al.
Publicado: (2023) -
Analytic Function Approximation by Path-Norm-Regularized Deep Neural Networks
por: Beknazaryan, Aleksandr
Publicado: (2022) -
Deep convolutional neural networks for regular texture recognition
por: Liu, Ni, et al.
Publicado: (2022) -
Optimized Projection and Fisher Discriminative Dictionary Learning for EEG Emotion Recognition
por: Gu, Xiaoqing, et al.
Publicado: (2021)