Cargando…

Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles

Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile...

Descripción completa

Detalles Bibliográficos
Autores principales: Sarmadi, Morteza, Ta, Christina, VanLonkhuyzen, Abigail M., De Fiesta, Dominique C., Kanelli, Maria, Sadeghi, Ilin, Behrens, Adam M., Ingalls, Bailey, Menon, Nandita, Daristotle, John L., Yu, Julie, Langer, Robert, Jaklenec, Ana
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278852/
https://www.ncbi.nlm.nih.gov/pubmed/35857507
http://dx.doi.org/10.1126/sciadv.abn5315
_version_ 1784746273264369664
author Sarmadi, Morteza
Ta, Christina
VanLonkhuyzen, Abigail M.
De Fiesta, Dominique C.
Kanelli, Maria
Sadeghi, Ilin
Behrens, Adam M.
Ingalls, Bailey
Menon, Nandita
Daristotle, John L.
Yu, Julie
Langer, Robert
Jaklenec, Ana
author_facet Sarmadi, Morteza
Ta, Christina
VanLonkhuyzen, Abigail M.
De Fiesta, Dominique C.
Kanelli, Maria
Sadeghi, Ilin
Behrens, Adam M.
Ingalls, Bailey
Menon, Nandita
Daristotle, John L.
Yu, Julie
Langer, Robert
Jaklenec, Ana
author_sort Sarmadi, Morteza
collection PubMed
description Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile release kinetics, providing such capabilities. Here, we study this technology and the resulting core-shell microstructures. We demonstrated that pulsatile release is governed by a sudden increase in porosity of the polymeric matrix, leading to the formation of a porous path connecting the core to the environment. Moreover, the release kinetics within the range studied remained primarily independent of the particle geometry but highly dependent on its composition. A qualitative technique was developed to study the pattern of pH evolution in the particles. A computational model successfully modeled deformations, indicating sudden expansion of the particle before onset of release. Results of this study contribute to the understanding and design of advanced drug delivery systems.
format Online
Article
Text
id pubmed-9278852
institution National Center for Biotechnology Information
language English
publishDate 2022
publisher American Association for the Advancement of Science
record_format MEDLINE/PubMed
spelling pubmed-92788522022-07-29 Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles Sarmadi, Morteza Ta, Christina VanLonkhuyzen, Abigail M. De Fiesta, Dominique C. Kanelli, Maria Sadeghi, Ilin Behrens, Adam M. Ingalls, Bailey Menon, Nandita Daristotle, John L. Yu, Julie Langer, Robert Jaklenec, Ana Sci Adv Biomedicine and Life Sciences Next-generation therapeutics require advanced drug delivery platforms with precise control over morphology and release kinetics. A recently developed microfabrication technique enables fabrication of a new class of injectable microparticles with a hollow core-shell structure that displays pulsatile release kinetics, providing such capabilities. Here, we study this technology and the resulting core-shell microstructures. We demonstrated that pulsatile release is governed by a sudden increase in porosity of the polymeric matrix, leading to the formation of a porous path connecting the core to the environment. Moreover, the release kinetics within the range studied remained primarily independent of the particle geometry but highly dependent on its composition. A qualitative technique was developed to study the pattern of pH evolution in the particles. A computational model successfully modeled deformations, indicating sudden expansion of the particle before onset of release. Results of this study contribute to the understanding and design of advanced drug delivery systems. American Association for the Advancement of Science 2022-07-13 /pmc/articles/PMC9278852/ /pubmed/35857507 http://dx.doi.org/10.1126/sciadv.abn5315 Text en Copyright © 2022 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works. Distributed under a Creative Commons Attribution NonCommercial License 4.0 (CC BY-NC). https://creativecommons.org/licenses/by-nc/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution-NonCommercial license (https://creativecommons.org/licenses/by-nc/4.0/) , which permits use, distribution, and reproduction in any medium, so long as the resultant use is not for commercial advantage and provided the original work is properly cited.
spellingShingle Biomedicine and Life Sciences
Sarmadi, Morteza
Ta, Christina
VanLonkhuyzen, Abigail M.
De Fiesta, Dominique C.
Kanelli, Maria
Sadeghi, Ilin
Behrens, Adam M.
Ingalls, Bailey
Menon, Nandita
Daristotle, John L.
Yu, Julie
Langer, Robert
Jaklenec, Ana
Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles
title Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles
title_full Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles
title_fullStr Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles
title_full_unstemmed Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles
title_short Experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles
title_sort experimental and computational understanding of pulsatile release mechanism from biodegradable core-shell microparticles
topic Biomedicine and Life Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278852/
https://www.ncbi.nlm.nih.gov/pubmed/35857507
http://dx.doi.org/10.1126/sciadv.abn5315
work_keys_str_mv AT sarmadimorteza experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT tachristina experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT vanlonkhuyzenabigailm experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT defiestadominiquec experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT kanellimaria experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT sadeghiilin experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT behrensadamm experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT ingallsbailey experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT menonnandita experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT daristotlejohnl experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT yujulie experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT langerrobert experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles
AT jaklenecana experimentalandcomputationalunderstandingofpulsatilereleasemechanismfrombiodegradablecoreshellmicroparticles