Cargando…

RRM2 enhances MYCN-driven neuroblastoma formation and acts as a synergistic target with CHK1 inhibition

High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this app...

Descripción completa

Detalles Bibliográficos
Autores principales: Nunes, Carolina, Depestel, Lisa, Mus, Liselot, Keller, Kaylee M., Delhaye, Louis, Louwagie, Amber, Rishfi, Muhammad, Whale, Alex, Kara, Neesha, Andrews, Simon R., Dela Cruz, Filemon, You, Daoqi, Siddiquee, Armaan, Cologna, Camila Takeno, De Craemer, Sam, Dolman, Emmy, Bartenhagen, Christoph, De Vloed, Fanny, Sanders, Ellen, Eggermont, Aline, Bekaert, Sarah-Lee, Van Loocke, Wouter, Bek, Jan Willem, Dewyn, Givani, Loontiens, Siebe, Van Isterdael, Gert, Decaesteker, Bieke, Tilleman, Laurentijn, Van Nieuwerburgh, Filip, Vermeirssen, Vanessa, Van Neste, Christophe, Ghesquiere, Bart, Goossens, Steven, Eyckerman, Sven, De Preter, Katleen, Fischer, Matthias, Houseley, Jon, Molenaar, Jan, De Wilde, Bram, Roberts, Stephen S., Durinck, Kaat, Speleman, Frank
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Association for the Advancement of Science 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278860/
https://www.ncbi.nlm.nih.gov/pubmed/35857500
http://dx.doi.org/10.1126/sciadv.abn1382
Descripción
Sumario:High-risk neuroblastoma, a pediatric tumor originating from the sympathetic nervous system, has a low mutation load but highly recurrent somatic DNA copy number variants. Previously, segmental gains and/or amplifications allowed identification of drivers for neuroblastoma development. Using this approach, combined with gene dosage impact on expression and survival, we identified ribonucleotide reductase subunit M2 (RRM2) as a candidate dependency factor further supported by growth inhibition upon in vitro knockdown and accelerated tumor formation in a neuroblastoma zebrafish model coexpressing human RRM2 with MYCN. Forced RRM2 induction alleviates excessive replicative stress induced by CHK1 inhibition, while high RRM2 expression in human neuroblastomas correlates with high CHK1 activity. MYCN-driven zebrafish tumors with RRM2 co-overexpression exhibit differentially expressed DNA repair genes in keeping with enhanced ATR-CHK1 signaling activity. In vitro, RRM2 inhibition enhances intrinsic replication stress checkpoint addiction. Last, combinatorial RRM2-CHK1 inhibition acts synergistic in high-risk neuroblastoma cell lines and patient-derived xenograft models, illustrating the therapeutic potential.