Cargando…
Octopus-inspired adhesive skins for intelligent and rapidly switchable underwater adhesion
The octopus couples controllable adhesives with intricately embedded sensing, processing, and control to manipulate underwater objects. Current synthetic adhesive–based manipulators are typically manually operated without sensing or control and can be slow to activate and release adhesion, which lim...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9278861/ https://www.ncbi.nlm.nih.gov/pubmed/35857521 http://dx.doi.org/10.1126/sciadv.abq1905 |
Sumario: | The octopus couples controllable adhesives with intricately embedded sensing, processing, and control to manipulate underwater objects. Current synthetic adhesive–based manipulators are typically manually operated without sensing or control and can be slow to activate and release adhesion, which limits system-level manipulation. Here, we couple switchable, octopus-inspired adhesives with embedded sensing, processing, and control for robust underwater manipulation. Adhesion strength is switched over 450× from the ON to OFF state in <50 ms over many cycles with an actively controlled membrane. Systematic design of adhesive geometry enables adherence to nonideal surfaces with low preload and independent control of adhesive strength and adhesive toughness for strong and reliable attachment and easy release. Our bio-inspired nervous system detects objects and autonomously triggers the switchable adhesives. This is implemented into a wearable glove where an array of adhesives and sensors creates a biomimetic adhesive skin to manipulate diverse underwater objects. |
---|