Cargando…

Targeting the lncRNA FGD5-AS1/miR-497-5p/PD-L1 Axis Inhibits Malignant Phenotypes in Colon Cancer (CC)

Long noncoding RNAs (lncRNAs) regulate cancer progression and drug resistance. However, the role of lncRNA FGD5-AS1 in regulating colon cancer (CC) progression is still largely unknown. Hence, this study investigated the role of lncRNA FGD5-AS1 in regulating colon cancer (CC) progression and found t...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Lijuan, Cai, Xinyi, Dai, Youguo, Chen, Yun, Yu, Jing, Zhou, Yongchun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279048/
https://www.ncbi.nlm.nih.gov/pubmed/35845947
http://dx.doi.org/10.1155/2022/1133332
Descripción
Sumario:Long noncoding RNAs (lncRNAs) regulate cancer progression and drug resistance. However, the role of lncRNA FGD5-AS1 in regulating colon cancer (CC) progression is still largely unknown. Hence, this study investigated the role of lncRNA FGD5-AS1 in regulating colon cancer (CC) progression and found that lncRNA FGD5-AS1 regulated miR-497-5p/PD-L1 axis to promote cancer progression in CC cells in vitro and in vivo. Specifically, we found that lncRNA FGD5-AS1 and PD-L1 tended to be high-expressed, while miR-497-5p was low-expressed in CC tissues and cell lines compared to the normal adjacent tissues and cells. Next, we found that lncRNA FGD5-AS1 positively regulated PD-L1 in CC cells by sponging miR-497-5p. Finally, our gain- and loss-of-function experiments evidenced that the lncRNA FGD5-AS1/miR-497-5p/PD-L1 axis regulates CC progression. Functionally, the data suggested that lncRNA FGD5-AS1 positively regulated while miR-497-5p negatively modulated malignant phenotypes, including cell proliferation, viability, invasion, migration, epithelial-mesenchymal transition (EMT), and tumorigenesis in CC cells. Interestingly, the inhibiting effects of lncRNA FGD5-AS1 ablation on CC development were abrogated by both silencing miR-497-5p and upregulating PD-L1. This study found that lncRNA FGD5-AS1 sponged miR-497-5p to upregulate PD-L1, resulting in CC progression, and provided novel agents for CC diagnosis and prognosis.