Cargando…

Computer Added Simulation of the Spread of Multidrug-Resistant Bacteria in an Radiation Therapy Shelter Based on Computational Fluid Dynamics

PURPOSE: Due to the poor ventilation and air stagnation in the radiation therapy ward, it is easy to cause respiratory disease transmission, which brings about the public health safety problem of infection. In order to alleviate this problem, we propose a research method based on computational fluid...

Descripción completa

Detalles Bibliográficos
Autores principales: Wu, Kuan, Li, Xiadong, Miu, Xiaoyan, Feng, Huichun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Hindawi 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279081/
https://www.ncbi.nlm.nih.gov/pubmed/35844457
http://dx.doi.org/10.1155/2022/4760823
Descripción
Sumario:PURPOSE: Due to the poor ventilation and air stagnation in the radiation therapy ward, it is easy to cause respiratory disease transmission, which brings about the public health safety problem of infection. In order to alleviate this problem, we propose a research method based on computational fluid dynamics (CFD). METHOD: A three-dimensional model of a radiation therapy ward is established, and the CFD software framework is used to numerically simulate the air flow field in the constrained radiation therapy ward environment. We computed the influence of the spray speed, particle size, and inlet content of respiratory droplets on the flow and spread of multidrug-resistant bacteria. RESULTS: In the range of the horizontal transmission line X from 0 to 3 meters, when the transmission speed (V) is 35 m/s, the multidrug-resistant bacteria concentration reaches the highest value. In the range of the vertical transmission line Y from 0 to 3 meters, when V is 35 m/s, the multidrug-resistant bacteria concentration reaches the highest value. CONCLUSION: A large amount of data shows that there is a positive correlation between the respiratory droplet spray velocity, inlet content, and the multidrug-resistant bacteria flow propagation speed and concentration distribution. The respiratory droplet size mainly affects the peak concentration of the multidrug-resistant bacteria flow propagation.