Cargando…
A sequence-based global map of regulatory activity for deciphering human genetics
Epigenomic profiling has enabled large-scale identification of regulatory elements, yet we still lack a systematic mapping from any sequence or variant to regulatory activities. We address this challenge with Sei, a framework for integrating human genetics data with sequence information to discover...
Autores principales: | Chen, Kathleen M., Wong, Aaron K., Troyanskaya, Olga G., Zhou, Jian |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279145/ https://www.ncbi.nlm.nih.gov/pubmed/35817977 http://dx.doi.org/10.1038/s41588-022-01102-2 |
Ejemplares similares
-
Deep learning sequence-based ab initio prediction of variant effects on expression and disease risk
por: Zhou, Jian, et al.
Publicado: (2018) -
Phosphoproteomics Meets Chemical Genetics: Approaches for Global Mapping and Deciphering the Phosphoproteome
por: Jurcik, Jan, et al.
Publicado: (2020) -
Global Quantitative Modeling of Chromatin Factor Interactions
por: Zhou, Jian, et al.
Publicado: (2014) -
Selene: a PyTorch-based deep learning library for sequence data
por: Chen, Kathleen M., et al.
Publicado: (2019) -
Deciphering human ribonucleoprotein regulatory networks
por: Mukherjee, Neelanjan, et al.
Publicado: (2019)