Cargando…
Developing an understanding of artificial intelligence lung nodule risk prediction using insights from the Brock model
OBJECTIVES: To determine if predictions of the Lung Cancer Prediction convolutional neural network (LCP-CNN) artificial intelligence (AI) model are analogous to the Brock model. METHODS: In total, 10,485 lung nodules in 4660 participants from the National Lung Screening Trial (NLST) were analysed. B...
Autores principales: | Chetan, Madhurima R., Dowson, Nicholas, Price, Noah Waterfield, Ather, Sarim, Nicolson, Angus, Gleeson, Fergus V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Berlin Heidelberg
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279235/ https://www.ncbi.nlm.nih.gov/pubmed/35238972 http://dx.doi.org/10.1007/s00330-022-08635-4 |
Ejemplares similares
-
Radiomics in predicting treatment response in non-small-cell lung cancer: current status, challenges and future perspectives
por: Chetan, Madhurima R., et al.
Publicado: (2020) -
Evaluation of a novel deep learning–based classifier for perifissural nodules
por: Han, Daiwei, et al.
Publicado: (2020) -
Artificial intelligence for prediction of COVID-19 progression using CT imaging and clinical data
por: Wang, Robin, et al.
Publicado: (2021) -
Performance of computer-aided detection of pulmonary nodules in low-dose CT: comparison with double reading by nodule volume
por: Zhao, Yingru, et al.
Publicado: (2012) -
COVID-19 patients and the radiology department – advice from the European Society of Radiology (ESR) and the European Society of Thoracic Imaging (ESTI)
por: Revel, Marie-Pierre, et al.
Publicado: (2020)