Cargando…
An Agmon–Allegretto–Piepenbrink principle for Schrödinger operators
We prove that each Borel function [Formula: see text] defined on an open subset [Formula: see text] induces a decomposition [Formula: see text] such that every function in [Formula: see text] is zero almost everywhere on S and existence of nonnegative supersolutions of [Formula: see text] on each co...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279265/ https://www.ncbi.nlm.nih.gov/pubmed/35847965 http://dx.doi.org/10.1007/s13398-022-01293-7 |
Sumario: | We prove that each Borel function [Formula: see text] defined on an open subset [Formula: see text] induces a decomposition [Formula: see text] such that every function in [Formula: see text] is zero almost everywhere on S and existence of nonnegative supersolutions of [Formula: see text] on each component [Formula: see text] yields nonnegativity of the associated quadratic form [Formula: see text] |
---|