Cargando…
Review of some existing QML frameworks and novel hybrid classical–quantum neural networks realising binary classification for the noisy datasets
One of the most promising areas of research to obtain practical advantage is Quantum Machine Learning which was born as a result of cross-fertilisation of ideas between Quantum Computing and Classical Machine Learning. In this paper, we apply Quantum Machine Learning (QML) frameworks to improve bina...
Autores principales: | Schetakis, N., Aghamalyan, D., Griffin, P., Boguslavsky, M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279282/ https://www.ncbi.nlm.nih.gov/pubmed/35831369 http://dx.doi.org/10.1038/s41598-022-14876-6 |
Ejemplares similares
-
Binary classifiers for noisy datasets: a comparative study of existing quantum machine learning frameworks and some new approaches
por: Schetakis, N., et al.
Publicado: (2021) -
QML Foundations: Building the case for QML in HEP
por: Dunjko, Vedran
Publicado: (2022) -
Computational quantum-classical boundary of noisy commuting quantum circuits
por: Fujii, Keisuke, et al.
Publicado: (2016) -
Optimizing Quantum Classification Algorithms on Classical Benchmark Datasets
por: John, Manuel, et al.
Publicado: (2023) -
Hybrid classical-quantum linear solver using Noisy Intermediate-Scale Quantum machines
por: Chen, Chih-Chieh, et al.
Publicado: (2019)