Cargando…
Moving closer to experimental level materials property prediction using AI
While experiments and DFT-computations have been the primary means for understanding the chemical and physical properties of crystalline materials, experiments are expensive and DFT-computations are time-consuming and have significant discrepancies against experiments. Currently, predictive modeling...
Autores principales: | Jha, Dipendra, Gupta, Vishu, Liao, Wei-keng, Choudhary, Alok, Agrawal, Ankit |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279333/ https://www.ncbi.nlm.nih.gov/pubmed/35831344 http://dx.doi.org/10.1038/s41598-022-15816-0 |
Ejemplares similares
-
Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2019) -
Author Correction: Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
por: Jha, Dipendra, et al.
Publicado: (2020) -
Enabling deeper learning on big data for materials informatics applications
por: Jha, Dipendra, et al.
Publicado: (2021) -
Cross-property deep transfer learning framework for enhanced predictive analytics on small materials data
por: Gupta, Vishu, et al.
Publicado: (2021) -
Improving deep learning model performance under parametric constraints for materials informatics applications
por: Gupta, Vishu, et al.
Publicado: (2023)