Cargando…

Multi-scale feature progressive fusion network for remote sensing image change detection

Presently, research on deep learning-based change detection (CD) methods has become a hot topic. In particular, feature pyramid networks (FPNs) are widely used in CD tasks to gradually fuse semantic features. However, existing FPN-based CD methods do not correctly detect the complete change region a...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Di, Cheng, Shuli, Wang, Liejun, Song, Shiji
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279334/
https://www.ncbi.nlm.nih.gov/pubmed/35831628
http://dx.doi.org/10.1038/s41598-022-16329-6
Descripción
Sumario:Presently, research on deep learning-based change detection (CD) methods has become a hot topic. In particular, feature pyramid networks (FPNs) are widely used in CD tasks to gradually fuse semantic features. However, existing FPN-based CD methods do not correctly detect the complete change region and cannot accurately locate the boundaries of the change region. To solve these problems, a new Multi-Scale Feature Progressive Fusion Network (MFPF-Net) is proposed, which consists of three innovative modules: Layer Feature Fusion Module (LFFM), Multi-Scale Feature Aggregation Module (MSFA), and Multi-Scale Feature Distribution Module (MSFD). Specifically, we first concatenate the features of each layer extracted from the bi-temporal images with their difference maps, and the resulting change maps fuse richer semantic information while effectively representing change regions. Then, the obtained change maps of each layer are directly aggregated, which improves the effective communication and full fusion of feature maps in CD while avoiding the interference of indirect information. Finally, the aggregated feature maps are layered again by pooling and convolution operations, and then a feature fusion strategy with a pyramid structure is used, with layers fused from low to high, to obtain richer contextual information, so that each layer of the layered feature maps has original semantic information and semantic features of other layers. We conducted comprehensive experiments on three publicly available benchmark datasets, CDD, LEVIR-CD, and WHU-CD to verify the effectiveness of the method, and the experimental results show that the method in this paper outperforms other comparative methods.