Cargando…
Microwave-assisted synthesis of trimethylolpropane triester (bio-lubricant) from camelina oil
Vegetable oils, whose hydrocarbon structure is very similar to that of petroleum products, are ideal renewable and sustainable alternatives to petroleum lubricants. Bio-lubricants are commonly synthesized by modifying the chemical structure of vegetable oils. In this study, microwave irradiation was...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279384/ https://www.ncbi.nlm.nih.gov/pubmed/35831357 http://dx.doi.org/10.1038/s41598-022-16209-z |
Sumario: | Vegetable oils, whose hydrocarbon structure is very similar to that of petroleum products, are ideal renewable and sustainable alternatives to petroleum lubricants. Bio-lubricants are commonly synthesized by modifying the chemical structure of vegetable oils. In this study, microwave irradiation was applied to intensify the mass-transfer-limited transesterification reaction to produce trimethylolpropane triester (bio-lubricant) from camelina oil as a promising local energy crop. A rotatable RSM-BBD method was applied to find the optimal levels of experimental factors, namely reaction time (67.8 min), the catalyst concentration (1.4 wt%) and the molar ratio (3.5). In these optimal levels, the reaction yield of 94.3% was obtained with desirability of 0.975. The quadratic statistical model with a determination coefficient of 97.97%, a standard deviation of 0.91 and a variation coefficient of 1% was suggested as the most appropriate model by Design-Expert software. Finally, the physicochemical properties of the purified product were in accordance with the requirements of the ISO-VG22 base oil standard. |
---|