Cargando…

Proposal of time domain impedance spectroscopy to determine precise dimensionless figure of merit for thermoelectric modules within minutes

Several techniques exist that use a thermoelectric element (TE) or module (TM) to measure precise dimensionless figure of merit (zT), both qualitatively and quantitatively. The techniques can be applied using both alternating (AC) and direct current (DC). Herein, the transient Harman (TH) and impeda...

Descripción completa

Detalles Bibliográficos
Autores principales: Hasegawa, Yasuhiro, Takeuchi, Mai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279445/
https://www.ncbi.nlm.nih.gov/pubmed/35831398
http://dx.doi.org/10.1038/s41598-022-15947-4
Descripción
Sumario:Several techniques exist that use a thermoelectric element (TE) or module (TM) to measure precise dimensionless figure of merit (zT), both qualitatively and quantitatively. The techniques can be applied using both alternating (AC) and direct current (DC). Herein, the transient Harman (TH) and impedance spectroscopy (IS) methods were investigated as direct zT measurement techniques using identical TM, which showed that zT at 300 K was 0.767 and 0.811 within several minutes and several hours, respectively. The zT values differed despite the use of the same TM, which revealed that measuring ohmic resistance using DC and pulse DC is potentially misleading owing to the influence of Peltier heat on current flow. In this study, time domain impedance spectroscopy (TDIS) was proposed as a new technique to measure zT using proper DC and AC. zT obtained using TDIS was 0.811 within several minutes using the time and frequency domains, and was perfectly consistent with the result of the IS method. In conclusion, the TDIS is highly appropriate in estimating zT directly using only proper electrometric measurements, and without any heat measurements.