Cargando…
Comparing machine learning and deep learning regression frameworks for accurate prediction of dielectrophoretic force
An intelligent sensing framework using Machine Learning (ML) and Deep Learning (DL) architectures to precisely quantify dielectrophoretic force invoked on microparticles in a textile electrode-based DEP sensing device is reported. The prediction accuracy and generalization ability of the framework w...
Autores principales: | Ajala, Sunday, Muraleedharan Jalajamony, Harikrishnan, Nair, Midhun, Marimuthu, Pradeep, Fernandez, Renny Edwin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279499/ https://www.ncbi.nlm.nih.gov/pubmed/35831342 http://dx.doi.org/10.1038/s41598-022-16114-5 |
Ejemplares similares
-
Deep-Learning Based Estimation of Dielectrophoretic Force
por: Ajala, Sunday, et al.
Publicado: (2021) -
Machine learning-assisted ammonium detection using zinc oxide/multi-walled carbon nanotube composite based impedance sensors
por: Aliyana, Akshaya Kumar, et al.
Publicado: (2021) -
Machine learning of accurate energy-conserving molecular force fields
por: Chmiela, Stefan, et al.
Publicado: (2017) -
Applications of Converged Various Forces for Detection of Biomolecules and Novelty of Dielectrophoretic Force in the Applications
por: Lee, Seungjun, et al.
Publicado: (2020) -
BIGDML—Towards accurate quantum machine learning force fields for materials
por: Sauceda, Huziel E., et al.
Publicado: (2022)