Cargando…
Analysis of sentiment changes in online messages of depression patients before and during the COVID-19 epidemic based on BERT+BiLSTM
With the development of the Internet, more and more people prefer to confide their sentiments in the virtual world, especially those with depression. The social media where people with depression collectively leave messages is called the “Tree Hole”. The purpose of this article is to support the “Tr...
Autores principales: | Guo, Chaohui, Lin, Shaofu, Huang, Zhisheng, Yao, Yahong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279529/ https://www.ncbi.nlm.nih.gov/pubmed/35846171 http://dx.doi.org/10.1007/s13755-022-00184-w |
Ejemplares similares
-
Research on sentiment classification for netizens based on the BERT-BiLSTM-TextCNN model
por: Jiang, Xuchu, et al.
Publicado: (2022) -
Integrating BERT Embeddings and BiLSTM for Emotion Analysis of Dialogue
por: Gou, Zhinan, et al.
Publicado: (2023) -
BJBN: BERT-JOIN-BiLSTM Networks for Medical Auxiliary Diagnostic
por: Xu, Chuanjie, et al.
Publicado: (2022) -
Retracted: BJBN: BERT-JOIN-BiLSTM Networks for Medical Auxiliary Diagnostic
por: Healthcare Engineering, Journal of
Publicado: (2023) -
Sentiment Analysis: An ERNIE-BiLSTM Approach to Bullet Screen Comments
por: Hsieh, Yen-Hao, et al.
Publicado: (2022)