Cargando…
Deep Learning Models for Segmenting Non-perfusion Area of Color Fundus Photographs in Patients With Branch Retinal Vein Occlusion
PURPOSE: To develop artificial intelligence (AI)-based deep learning (DL) models for automatically detecting the ischemia type and the non-perfusion area (NPA) from color fundus photographs (CFPs) of patients with branch retinal vein occlusion (BRVO). METHODS: This was a retrospective analysis of 27...
Autores principales: | Miao, Jinxin, Yu, Jiale, Zou, Wenjun, Su, Na, Peng, Zongyi, Wu, Xinjing, Huang, Junlong, Fang, Yuan, Yuan, Songtao, Xie, Ping, Huang, Kun, Chen, Qiang, Hu, Zizhong, Liu, Qinghuai |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279621/ https://www.ncbi.nlm.nih.gov/pubmed/35847781 http://dx.doi.org/10.3389/fmed.2022.794045 |
Ejemplares similares
-
New Developments in the Classification, Pathogenesis, Risk Factors, Natural History, and Treatment of Branch Retinal Vein Occlusion
por: Li, Jia, et al.
Publicado: (2017) -
Registration of OCT fundus images with color fundus photographs based on blood vessel ridges
por: Li, Ying, et al.
Publicado: (2010) -
Fundus Autofluorescence and Optical Coherence Tomography Findings in Branch Retinal Vein Occlusion
por: Sekiryu, Tetsuju, et al.
Publicado: (2012) -
A review on automatic analysis techniques for color fundus photographs
por: Besenczi, Renátó, et al.
Publicado: (2016) -
Comparison of Color Fundus Photography and Multicolor Fundus Imaging for Detection of Lesions in Diabetic Retinopathy and Retinal Vein Occlusion
por: Castro, Catarina, et al.
Publicado: (2023)