Cargando…
Continuous Decoding of Hand Movement From EEG Signals Using Phase-Based Connectivity Features
The principal goal of the brain-computer interface (BCI) is to translate brain signals into meaningful commands to control external devices or neuroprostheses to restore lost functions of patients with severe motor disabilities. The invasive recording of brain signals involves numerous health issues...
Autores principales: | Hosseini, Seyyed Moosa, Shalchyan, Vahid |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279670/ https://www.ncbi.nlm.nih.gov/pubmed/35845243 http://dx.doi.org/10.3389/fnhum.2022.901285 |
Ejemplares similares
-
Decoding Voluntary Movement of Single Hand Based on Analysis of Brain Connectivity by Using EEG Signals
por: Li, Ting, et al.
Publicado: (2018) -
The Influence of Different EEG References on Scalp EEG Functional Network Analysis During Hand Movement Tasks
por: Zhang, Lipeng, et al.
Publicado: (2020) -
Machine Learning Approaches for MDD Detection and Emotion Decoding Using EEG Signals
por: Duan, Lijuan, et al.
Publicado: (2020) -
Cross-Dataset Variability Problem in EEG Decoding With Deep Learning
por: Xu, Lichao, et al.
Publicado: (2020) -
Decoding Intracranial EEG With Machine Learning: A Systematic Review
por: Mirchi, Nykan, et al.
Publicado: (2022)