Cargando…
Diagnostic study on clinical feasibility of an AI-based diagnostic system as a second reader on mobile CT images: a preliminary result
BACKGROUND: Artificial intelligence (AI) has breathed new life into the lung nodules detection and diagnosis. However, whether the output information from AI will translate into benefits for clinical workflow or patient outcomes in a real-world setting remains unknown. This study was to demonstrate...
Autores principales: | , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
AME Publishing Company
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279799/ https://www.ncbi.nlm.nih.gov/pubmed/35845492 http://dx.doi.org/10.21037/atm-22-2157 |
Sumario: | BACKGROUND: Artificial intelligence (AI) has breathed new life into the lung nodules detection and diagnosis. However, whether the output information from AI will translate into benefits for clinical workflow or patient outcomes in a real-world setting remains unknown. This study was to demonstrate the feasibility of an AI-based diagnostic system deployed as a second reader in imaging interpretation for patients screened for pulmonary abnormalities in a clinical setting. METHODS: The study included patients from a lung cancer screening program conducted in Sichuan Province, China using a mobile computed tomography (CT) scanner which traveled to medium-size cities between July 10(th), 2020 and September 10(th), 2020. Cases that were suspected to have malignant nodules by junior radiologists, senior radiologists or AI were labeled a high risk (HR) tag as HR-junior, HR-senior and HR-AI, respectively, and included into final analysis. The diagnosis efficacy of the AI was evaluated by calculating negative predictive value and positive predictive value when referring to the senior readers’ final results as the gold standard. Besides, characteristics of the lesions were compared among cases with different HR labels. RESULTS: In total, 251/3,872 patients (6.48%, male/female: 91/160, median age, 66 years) with HR lung nodules were included. The AI algorithm achieved a negative predictive value of 88.2% [95% confidence interval (CI): 62.2–98.0%] and a positive predictive value of 55.6% (95% CI: 49.0–62.0%). The diagnostic duration was significantly reduced when AI was used as a second reader (223±145.6 vs. 270±143.17 s, P<0.001). The information yielded by AI affected the radiologist’s decision-making in 35/145 cases. Lesions of HR cases had a higher volume [309.9 (214.9–732.5) vs. 141.3 (79.3–380.8) mm(3), P<0.001], lower average CT number [−511.0 (−576.5 to −100.5) vs. −191.5 (−487.3 to 22.5), P=0.010], and pure ground glass opacity rather than solid. CONCLUSIONS: The AI algorithm had high negative predictive value but low positive predictive value in diagnosing HR lung lesions in a clinical setting. Deploying AI as a second reader could help avoid missed diagnoses, reduce diagnostic duration, and strengthen diagnostic confidence for radiologists. |
---|