Cargando…
Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features
Internet gaming disorder (IGD) has become an important social and psychiatric issue in recent years. To prevent IGD and provide the appropriate intervention, an accurate prediction method for identifying IGD is necessary. In this study, we investigated machine learning methods of multimodal neuroima...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279895/ https://www.ncbi.nlm.nih.gov/pubmed/35844227 http://dx.doi.org/10.3389/fnins.2022.856510 |
_version_ | 1784746506602938368 |
---|---|
author | Jeong, Boram Lee, Jiyoon Kim, Heejung Gwak, Seungyeon Kim, Yu Kyeong Yoo, So Young Lee, Donghwan Choi, Jung-Seok |
author_facet | Jeong, Boram Lee, Jiyoon Kim, Heejung Gwak, Seungyeon Kim, Yu Kyeong Yoo, So Young Lee, Donghwan Choi, Jung-Seok |
author_sort | Jeong, Boram |
collection | PubMed |
description | Internet gaming disorder (IGD) has become an important social and psychiatric issue in recent years. To prevent IGD and provide the appropriate intervention, an accurate prediction method for identifying IGD is necessary. In this study, we investigated machine learning methods of multimodal neuroimaging data including Positron Emission Tomography (PET), Electroencephalography (EEG), and clinical features to enhance prediction accuracy. Unlike the conventional methods which usually concatenate all features into one feature vector, we adopted a multiple-kernel support vector machine (MK-SVM) to classify IGD. We compared the prediction performance of standard machine learning methods such as SVM, random forest, and boosting with the proposed method in patients with IGD (N = 28) and healthy controls (N = 24). We showed that the prediction accuracy of the optimal MK-SVM using three kinds of modalities was much higher than other conventional machine learning methods, with the highest accuracy being 86.5%, the sensitivity 89.3%, and the specificity 83.3%. Furthermore, we deduced that clinical variables had the highest contribution to the optimal IGD prediction model and that the other two modalities were also indispensable. We found that more efficient integration of multimodal data through kernel combination could contribute to better performance of the prediction model. This study is a novel attempt to integrate each method from different sources and suggests that integrating each method, such as self-administrated reports, PET, and EEG, improves the prediction of IGD. |
format | Online Article Text |
id | pubmed-9279895 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92798952022-07-15 Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features Jeong, Boram Lee, Jiyoon Kim, Heejung Gwak, Seungyeon Kim, Yu Kyeong Yoo, So Young Lee, Donghwan Choi, Jung-Seok Front Neurosci Neuroscience Internet gaming disorder (IGD) has become an important social and psychiatric issue in recent years. To prevent IGD and provide the appropriate intervention, an accurate prediction method for identifying IGD is necessary. In this study, we investigated machine learning methods of multimodal neuroimaging data including Positron Emission Tomography (PET), Electroencephalography (EEG), and clinical features to enhance prediction accuracy. Unlike the conventional methods which usually concatenate all features into one feature vector, we adopted a multiple-kernel support vector machine (MK-SVM) to classify IGD. We compared the prediction performance of standard machine learning methods such as SVM, random forest, and boosting with the proposed method in patients with IGD (N = 28) and healthy controls (N = 24). We showed that the prediction accuracy of the optimal MK-SVM using three kinds of modalities was much higher than other conventional machine learning methods, with the highest accuracy being 86.5%, the sensitivity 89.3%, and the specificity 83.3%. Furthermore, we deduced that clinical variables had the highest contribution to the optimal IGD prediction model and that the other two modalities were also indispensable. We found that more efficient integration of multimodal data through kernel combination could contribute to better performance of the prediction model. This study is a novel attempt to integrate each method from different sources and suggests that integrating each method, such as self-administrated reports, PET, and EEG, improves the prediction of IGD. Frontiers Media S.A. 2022-06-30 /pmc/articles/PMC9279895/ /pubmed/35844227 http://dx.doi.org/10.3389/fnins.2022.856510 Text en Copyright © 2022 Jeong, Lee, Kim, Gwak, Kim, Yoo, Lee and Choi. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Neuroscience Jeong, Boram Lee, Jiyoon Kim, Heejung Gwak, Seungyeon Kim, Yu Kyeong Yoo, So Young Lee, Donghwan Choi, Jung-Seok Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features |
title | Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features |
title_full | Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features |
title_fullStr | Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features |
title_full_unstemmed | Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features |
title_short | Multiple-Kernel Support Vector Machine for Predicting Internet Gaming Disorder Using Multimodal Fusion of PET, EEG, and Clinical Features |
title_sort | multiple-kernel support vector machine for predicting internet gaming disorder using multimodal fusion of pet, eeg, and clinical features |
topic | Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279895/ https://www.ncbi.nlm.nih.gov/pubmed/35844227 http://dx.doi.org/10.3389/fnins.2022.856510 |
work_keys_str_mv | AT jeongboram multiplekernelsupportvectormachineforpredictinginternetgamingdisorderusingmultimodalfusionofpeteegandclinicalfeatures AT leejiyoon multiplekernelsupportvectormachineforpredictinginternetgamingdisorderusingmultimodalfusionofpeteegandclinicalfeatures AT kimheejung multiplekernelsupportvectormachineforpredictinginternetgamingdisorderusingmultimodalfusionofpeteegandclinicalfeatures AT gwakseungyeon multiplekernelsupportvectormachineforpredictinginternetgamingdisorderusingmultimodalfusionofpeteegandclinicalfeatures AT kimyukyeong multiplekernelsupportvectormachineforpredictinginternetgamingdisorderusingmultimodalfusionofpeteegandclinicalfeatures AT yoosoyoung multiplekernelsupportvectormachineforpredictinginternetgamingdisorderusingmultimodalfusionofpeteegandclinicalfeatures AT leedonghwan multiplekernelsupportvectormachineforpredictinginternetgamingdisorderusingmultimodalfusionofpeteegandclinicalfeatures AT choijungseok multiplekernelsupportvectormachineforpredictinginternetgamingdisorderusingmultimodalfusionofpeteegandclinicalfeatures |