Cargando…

Serum transfer RNA‐derived fragment tRF‐31‐79MP9P9NH57SD acts as a novel diagnostic biomarker for non‐small cell lung cancer

BACKGROUND: tRNA‐derived fragments (tRFs) have been found to have a crucial function in the pathophysiology of cancers. However, the function of tRFs in non‐small cell lung cancer (NSCLC) is yet unknown. The goal of this study was to assess the tRF‐31‐79MP9P9NH57SD serum expression from NSCLC patien...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Jipeng, Cao, Chao, Fang, Laifu, Yu, Wanjun
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9279995/
https://www.ncbi.nlm.nih.gov/pubmed/35576497
http://dx.doi.org/10.1002/jcla.24492
Descripción
Sumario:BACKGROUND: tRNA‐derived fragments (tRFs) have been found to have a crucial function in the pathophysiology of cancers. However, the function of tRFs in non‐small cell lung cancer (NSCLC) is yet unknown. The goal of this study was to assess the tRF‐31‐79MP9P9NH57SD serum expression from NSCLC patients and to determine its diagnostic usefulness. METHODS: By using stem‐loop quantitative real‐time PCR, we were able to detect various tRF‐31‐79MP9P9NH57SD expressions in 96 NSCLC serum samples, 96 healthy controls, and 20 pairs of NSCLC serum samples pre‐ and post‐surgery (qRT‐PCR). After that, we analyzed its diagnostic effectiveness using the receiver operating characteristic (ROC) curve. RESULTS: Serum tRF‐31‐79MP9P9NH57SD expression was higher in NSCLC patients, and levels of tRF‐31‐79MP9P9NH57SD were linked to the clinical stage (p = 0.002) and the malignancy of lymph node (p = 0.012). In addition, after the procedure, the serum tRF‐31‐79MP9P9NH57SD expression in NSCLC patients dropped. With 48.96 percent sensitivity and 90.62 percent specificity, the area under ROC curve (AUC) was 0.733. CONCLUSION: serum tRF‐31‐79MP9P9NH57SD possibly is a new and groundbreaking biomarker for the NSCLC.