Cargando…

Self-assembled sonogels formed from 1,4-naphthalenedicarbonyldinicotinic acid hydrazide

In this paper, we report self-assembled sonogels formed from 1,4-naphthalenedicarbonyldinicotinic acid hydrazide (NDC-NN3) in some liquids including ethanol, tetrahydrofuran (THF), 1,4-dioxane, n-propanol, n-butanol and n-pentanol. When the clear solution of NDC-NN3 in the selected liquids mentioned...

Descripción completa

Detalles Bibliográficos
Autores principales: Liao, Lieqiang, Liu, Ruidong, Hu, Shuwen, Jiang, Wenting, Chen, Yali, Zhong, Jinlian, Jia, Xinjian, Liu, Huijin, Luo, Xuzhong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society of Chemistry 2022
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280287/
https://www.ncbi.nlm.nih.gov/pubmed/35919589
http://dx.doi.org/10.1039/d2ra01391f
Descripción
Sumario:In this paper, we report self-assembled sonogels formed from 1,4-naphthalenedicarbonyldinicotinic acid hydrazide (NDC-NN3) in some liquids including ethanol, tetrahydrofuran (THF), 1,4-dioxane, n-propanol, n-butanol and n-pentanol. When the clear solution of NDC-NN3 in the selected liquids mentioned above at a suitable concentration was irradiated with ultrasound waves at room temperature, a sonogel was formed. Upon heating, the sonogel dissolved gradually and finally became a clear solution again. Upon cooling the hot solution to room temperature, the solution state did not change even after standing for a few days. Nevertheless, if the solution underwent sonication for a certain time, a stable gel was obtained again. The critical gelation concentrations (CGCs) of NDC-NN3 in ethanol, THF, 1,4-dioxane, n-propanol, n-butanol and n-pentanol are 10, 8, 6, 8, 6 and 8 mg mL(−1), respectively. The obtained sonogels display excellent mechanical properties. The crystal structure of NDC-NN3 suggests that the naphthalene ring, hydrazide group and the position of N in the pyridine ring mediate the self-assembly process. Upon sonication, the formation of suitable π–π stacking and intermolecular hydrogen bonding drives the gelator molecules to self-assemble into fibers, spheres and micro-burdock-shaped balls in various solvents, which ultimately confine the liquids.