Cargando…
Vector learning representation for generalized speech emotion recognition
Speech emotion recognition (SER) plays an important role in global business today to improve service efficiency. In the literature of SER, many techniques have been using deep learning to extract and learn features. Recently, we have proposed end-to-end learning for a deep residual local feature lea...
Autores principales: | Singkul, Sattaya, Woraratpanya, Kuntpong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280549/ https://www.ncbi.nlm.nih.gov/pubmed/35846479 http://dx.doi.org/10.1016/j.heliyon.2022.e09196 |
Ejemplares similares
-
A data generation framework for extremely rare case signals
por: Chalongvorachai, Thasorn, et al.
Publicado: (2021) -
Sentiment Analysis and Emotion Recognition from Speech Using Universal Speech Representations
por: Atmaja, Bagus Tris, et al.
Publicado: (2022) -
Articulation constrained learning with application to speech emotion recognition
por: Shah, Mohit, et al.
Publicado: (2019) -
Strong Generalized Speech Emotion Recognition Based on Effective Data Augmentation
por: Tao, Huawei, et al.
Publicado: (2022) -
Cross-Language Speech Emotion Recognition Using Bag-of-Word Representations, Domain Adaptation, and Data Augmentation
por: Kshirsagar, Shruti, et al.
Publicado: (2022)