Cargando…
Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness
The oblique plane waves with their dynamical behaviors for a (2+1)-dimensional nonlinear Schrödinger equation (NLSE) having beta derivative spatial-temporal evolution are investigated. In order to study such phenomena, NLSE is converted to a nonlinear ordinary differential equation with a planar dyn...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280585/ https://www.ncbi.nlm.nih.gov/pubmed/35846458 http://dx.doi.org/10.1016/j.heliyon.2022.e09199 |
_version_ | 1784746680926601216 |
---|---|
author | Uddin, M.F. Hafez, M.G. Iqbal, S.A. |
author_facet | Uddin, M.F. Hafez, M.G. Iqbal, S.A. |
author_sort | Uddin, M.F. |
collection | PubMed |
description | The oblique plane waves with their dynamical behaviors for a (2+1)-dimensional nonlinear Schrödinger equation (NLSE) having beta derivative spatial-temporal evolution are investigated. In order to study such phenomena, NLSE is converted to a nonlinear ordinary differential equation with a planar dynamical system by considering the variable wave transform with obliqueness and the properties of the beta derivative. Some more new general forms of analytical solutions, like bright, dark, singular, and pure periodic solutions of NLSE are constructed by employing the auxiliary ordinary differential equation method and the extended simplest equation method. The effect of obliqueness and beta derivative parameter on several types of wave structures along with the phase portrait diagrams are reported by considering some special values of parameters for the existence of attained solutions. It is found that the planar dynamical system is not supported by any type of orbit for [Formula: see text]. It is also confirmed from the obtained solutions that no plane waves are generated for [Formula: see text]. The presented studies on bifurcation analysis and analytical solutions for (2+1)-dimensional NLSE would be very useful to understand the physical scenarios of nonlinear spin dynamics in magnetic materials for Heisenberg models of ferromagnetic spin chains. |
format | Online Article Text |
id | pubmed-9280585 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92805852022-07-15 Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness Uddin, M.F. Hafez, M.G. Iqbal, S.A. Heliyon Research Article The oblique plane waves with their dynamical behaviors for a (2+1)-dimensional nonlinear Schrödinger equation (NLSE) having beta derivative spatial-temporal evolution are investigated. In order to study such phenomena, NLSE is converted to a nonlinear ordinary differential equation with a planar dynamical system by considering the variable wave transform with obliqueness and the properties of the beta derivative. Some more new general forms of analytical solutions, like bright, dark, singular, and pure periodic solutions of NLSE are constructed by employing the auxiliary ordinary differential equation method and the extended simplest equation method. The effect of obliqueness and beta derivative parameter on several types of wave structures along with the phase portrait diagrams are reported by considering some special values of parameters for the existence of attained solutions. It is found that the planar dynamical system is not supported by any type of orbit for [Formula: see text]. It is also confirmed from the obtained solutions that no plane waves are generated for [Formula: see text]. The presented studies on bifurcation analysis and analytical solutions for (2+1)-dimensional NLSE would be very useful to understand the physical scenarios of nonlinear spin dynamics in magnetic materials for Heisenberg models of ferromagnetic spin chains. Elsevier 2022-03-24 /pmc/articles/PMC9280585/ /pubmed/35846458 http://dx.doi.org/10.1016/j.heliyon.2022.e09199 Text en © 2022 The Author(s) https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Uddin, M.F. Hafez, M.G. Iqbal, S.A. Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness |
title | Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness |
title_full | Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness |
title_fullStr | Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness |
title_full_unstemmed | Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness |
title_short | Dynamical plane wave solutions for the Heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness |
title_sort | dynamical plane wave solutions for the heisenberg model of ferromagnetic spin chains with beta derivative evolution and obliqueness |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280585/ https://www.ncbi.nlm.nih.gov/pubmed/35846458 http://dx.doi.org/10.1016/j.heliyon.2022.e09199 |
work_keys_str_mv | AT uddinmf dynamicalplanewavesolutionsfortheheisenbergmodelofferromagneticspinchainswithbetaderivativeevolutionandobliqueness AT hafezmg dynamicalplanewavesolutionsfortheheisenbergmodelofferromagneticspinchainswithbetaderivativeevolutionandobliqueness AT iqbalsa dynamicalplanewavesolutionsfortheheisenbergmodelofferromagneticspinchainswithbetaderivativeevolutionandobliqueness |