Cargando…
Structure and biological activity of particles produced from highly activated carbon adsorbent
Over the recent years, carbon particles have gained relevance in the field of biomedical application to diminish the level of endo-/exogenous intoxication and oxidative stress products, which occur at different pathological states. However, it is very important that such carbon particles, specially...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280586/ https://www.ncbi.nlm.nih.gov/pubmed/35846471 http://dx.doi.org/10.1016/j.heliyon.2022.e09163 |
_version_ | 1784746681184550912 |
---|---|
author | Sarnatskaya, Veronika Shlapa, Yuliia Lykhova, Alexandra Brieieva, Olga Prokopenko, Igor Sidorenko, Alexey Solopan, Serhii Kolesnik, Denis Belous, Anatolii Nikolaev, Vladimir |
author_facet | Sarnatskaya, Veronika Shlapa, Yuliia Lykhova, Alexandra Brieieva, Olga Prokopenko, Igor Sidorenko, Alexey Solopan, Serhii Kolesnik, Denis Belous, Anatolii Nikolaev, Vladimir |
author_sort | Sarnatskaya, Veronika |
collection | PubMed |
description | Over the recent years, carbon particles have gained relevance in the field of biomedical application to diminish the level of endo-/exogenous intoxication and oxidative stress products, which occur at different pathological states. However, it is very important that such carbon particles, specially developed for parenteral administration or per oral usage, possess a high adsorption potential and can remove hazard toxic substances of the hydrophilic, hydrophobic and amphiphilic nature usually accumulated in the blood due to the disease, and be absolutely safe for normal living cells and tissues of organism. In this work, the stable monodisperse suspension containing very small-sized (D(hydro) = 1125.3 ± 243.8 nm) and highly pure carbon particles with an excellent accepting ability were obtained. UV-spectra, fluorescence quenching constant and binding association constant were provided by the information about conformational alterations in an albumin molecule in presence of carbon particles, about the dynamic type of quenching process and low binding affinity between carbon and protein. The later was confirmed by DSC method. In vitro cell culture experiments showed that carbon particles did not possess any cytotoxic effect towards all testing the normal cell lines of different histogenesis, did not show genotoxic effects and were absolutely safe for experimental animals during and after their parenteral administration. These observations may provide more information about how to develop a safe preparation of carbon particles for different biomedical applications, in particular, as a mean for intracorporeal therapy of various heavy diseases accompanied by the increased endogenous intoxication and the level of oxidative stress. |
format | Online Article Text |
id | pubmed-9280586 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-92805862022-07-15 Structure and biological activity of particles produced from highly activated carbon adsorbent Sarnatskaya, Veronika Shlapa, Yuliia Lykhova, Alexandra Brieieva, Olga Prokopenko, Igor Sidorenko, Alexey Solopan, Serhii Kolesnik, Denis Belous, Anatolii Nikolaev, Vladimir Heliyon Research Article Over the recent years, carbon particles have gained relevance in the field of biomedical application to diminish the level of endo-/exogenous intoxication and oxidative stress products, which occur at different pathological states. However, it is very important that such carbon particles, specially developed for parenteral administration or per oral usage, possess a high adsorption potential and can remove hazard toxic substances of the hydrophilic, hydrophobic and amphiphilic nature usually accumulated in the blood due to the disease, and be absolutely safe for normal living cells and tissues of organism. In this work, the stable monodisperse suspension containing very small-sized (D(hydro) = 1125.3 ± 243.8 nm) and highly pure carbon particles with an excellent accepting ability were obtained. UV-spectra, fluorescence quenching constant and binding association constant were provided by the information about conformational alterations in an albumin molecule in presence of carbon particles, about the dynamic type of quenching process and low binding affinity between carbon and protein. The later was confirmed by DSC method. In vitro cell culture experiments showed that carbon particles did not possess any cytotoxic effect towards all testing the normal cell lines of different histogenesis, did not show genotoxic effects and were absolutely safe for experimental animals during and after their parenteral administration. These observations may provide more information about how to develop a safe preparation of carbon particles for different biomedical applications, in particular, as a mean for intracorporeal therapy of various heavy diseases accompanied by the increased endogenous intoxication and the level of oxidative stress. Elsevier 2022-03-24 /pmc/articles/PMC9280586/ /pubmed/35846471 http://dx.doi.org/10.1016/j.heliyon.2022.e09163 Text en © 2022 The Authors https://creativecommons.org/licenses/by-nc-nd/4.0/This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Research Article Sarnatskaya, Veronika Shlapa, Yuliia Lykhova, Alexandra Brieieva, Olga Prokopenko, Igor Sidorenko, Alexey Solopan, Serhii Kolesnik, Denis Belous, Anatolii Nikolaev, Vladimir Structure and biological activity of particles produced from highly activated carbon adsorbent |
title | Structure and biological activity of particles produced from highly activated carbon adsorbent |
title_full | Structure and biological activity of particles produced from highly activated carbon adsorbent |
title_fullStr | Structure and biological activity of particles produced from highly activated carbon adsorbent |
title_full_unstemmed | Structure and biological activity of particles produced from highly activated carbon adsorbent |
title_short | Structure and biological activity of particles produced from highly activated carbon adsorbent |
title_sort | structure and biological activity of particles produced from highly activated carbon adsorbent |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280586/ https://www.ncbi.nlm.nih.gov/pubmed/35846471 http://dx.doi.org/10.1016/j.heliyon.2022.e09163 |
work_keys_str_mv | AT sarnatskayaveronika structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT shlapayuliia structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT lykhovaalexandra structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT brieievaolga structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT prokopenkoigor structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT sidorenkoalexey structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT solopanserhii structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT kolesnikdenis structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT belousanatolii structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent AT nikolaevvladimir structureandbiologicalactivityofparticlesproducedfromhighlyactivatedcarbonadsorbent |