Cargando…
Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants
[Image: see text] Implant-related infections, mainly caused by Staphylococcus aureus, are a major health concern. Treatment is challenging due to multi-resistant strains and the ability of S. aureus to adhere and form biofilms on bone and implant surfaces. The present work involved the preparation a...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical Society
2022
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280759/ https://www.ncbi.nlm.nih.gov/pubmed/35847270 http://dx.doi.org/10.1021/acsomega.2c00504 |
_version_ | 1784746721420509184 |
---|---|
author | Soares, Íris Faria, Jaime Marques, Ana Ribeiro, Isabel A. C. Baleizão, Carlos Bettencourt, Ana Ferreira, Isabel M. M. Baptista, Ana Catarina |
author_facet | Soares, Íris Faria, Jaime Marques, Ana Ribeiro, Isabel A. C. Baleizão, Carlos Bettencourt, Ana Ferreira, Isabel M. M. Baptista, Ana Catarina |
author_sort | Soares, Íris |
collection | PubMed |
description | [Image: see text] Implant-related infections, mainly caused by Staphylococcus aureus, are a major health concern. Treatment is challenging due to multi-resistant strains and the ability of S. aureus to adhere and form biofilms on bone and implant surfaces. The present work involved the preparation and evaluation of a novel dual polymeric film coating on stainless steel. Chitosan and polycaprolactone (PCL) multilayers, loaded with poly(methyl methacrylate) (PMMA) microspheres encapsulating vancomycin or daptomycin, produced by the dip-coating technique, allowed local antibiotic-controlled delivery for the treatment of implant-related infections. Enhanced adhesion of the film to the metal substrate surface was achieved by mechanical abrasion of its surface. Studies have shown that for both drugs the release occurs by diffusion, but the release profile depends on the type of drug (daptomycin or vancomycin), the pH of the solution, and whether the drug is freestanding (directly incorporated into the films) or encapsulated in PMMA microspheres. Daptomycin freestanding films reached 90% release after 1 day at pH 7.4 and 4 days at pH 5.5. In comparison, films with daptomycin encapsulated microspheres reached 90% release after 2 h at pH 5.5 and 2 days at pH 7.4. Vancomycin encapsulated and freestanding films showed a similar behavior reaching 90% release after 20 h of release at pH 5.5 and 2 and 3 days, respectively, at pH 7.4. Furthermore, daptomycin-loaded films showed activity (assessed by agar diffusion assays) against sensitive (ATCC 25923) and clinically isolated (MRSA) S. aureus strains. |
format | Online Article Text |
id | pubmed-9280759 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | American Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-92807592022-07-15 Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants Soares, Íris Faria, Jaime Marques, Ana Ribeiro, Isabel A. C. Baleizão, Carlos Bettencourt, Ana Ferreira, Isabel M. M. Baptista, Ana Catarina ACS Omega [Image: see text] Implant-related infections, mainly caused by Staphylococcus aureus, are a major health concern. Treatment is challenging due to multi-resistant strains and the ability of S. aureus to adhere and form biofilms on bone and implant surfaces. The present work involved the preparation and evaluation of a novel dual polymeric film coating on stainless steel. Chitosan and polycaprolactone (PCL) multilayers, loaded with poly(methyl methacrylate) (PMMA) microspheres encapsulating vancomycin or daptomycin, produced by the dip-coating technique, allowed local antibiotic-controlled delivery for the treatment of implant-related infections. Enhanced adhesion of the film to the metal substrate surface was achieved by mechanical abrasion of its surface. Studies have shown that for both drugs the release occurs by diffusion, but the release profile depends on the type of drug (daptomycin or vancomycin), the pH of the solution, and whether the drug is freestanding (directly incorporated into the films) or encapsulated in PMMA microspheres. Daptomycin freestanding films reached 90% release after 1 day at pH 7.4 and 4 days at pH 5.5. In comparison, films with daptomycin encapsulated microspheres reached 90% release after 2 h at pH 5.5 and 2 days at pH 7.4. Vancomycin encapsulated and freestanding films showed a similar behavior reaching 90% release after 20 h of release at pH 5.5 and 2 and 3 days, respectively, at pH 7.4. Furthermore, daptomycin-loaded films showed activity (assessed by agar diffusion assays) against sensitive (ATCC 25923) and clinically isolated (MRSA) S. aureus strains. American Chemical Society 2022-06-28 /pmc/articles/PMC9280759/ /pubmed/35847270 http://dx.doi.org/10.1021/acsomega.2c00504 Text en © 2022 The Authors. Published by American Chemical Society https://creativecommons.org/licenses/by-nc-nd/4.0/Permits non-commercial access and re-use, provided that author attribution and integrity are maintained; but does not permit creation of adaptations or other derivative works (https://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Soares, Íris Faria, Jaime Marques, Ana Ribeiro, Isabel A. C. Baleizão, Carlos Bettencourt, Ana Ferreira, Isabel M. M. Baptista, Ana Catarina Drug Delivery from PCL/Chitosan Multilayer Coatings for Metallic Implants |
title | Drug Delivery from PCL/Chitosan Multilayer Coatings
for Metallic Implants |
title_full | Drug Delivery from PCL/Chitosan Multilayer Coatings
for Metallic Implants |
title_fullStr | Drug Delivery from PCL/Chitosan Multilayer Coatings
for Metallic Implants |
title_full_unstemmed | Drug Delivery from PCL/Chitosan Multilayer Coatings
for Metallic Implants |
title_short | Drug Delivery from PCL/Chitosan Multilayer Coatings
for Metallic Implants |
title_sort | drug delivery from pcl/chitosan multilayer coatings
for metallic implants |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280759/ https://www.ncbi.nlm.nih.gov/pubmed/35847270 http://dx.doi.org/10.1021/acsomega.2c00504 |
work_keys_str_mv | AT soaresiris drugdeliveryfrompclchitosanmultilayercoatingsformetallicimplants AT fariajaime drugdeliveryfrompclchitosanmultilayercoatingsformetallicimplants AT marquesana drugdeliveryfrompclchitosanmultilayercoatingsformetallicimplants AT ribeiroisabelac drugdeliveryfrompclchitosanmultilayercoatingsformetallicimplants AT baleizaocarlos drugdeliveryfrompclchitosanmultilayercoatingsformetallicimplants AT bettencourtana drugdeliveryfrompclchitosanmultilayercoatingsformetallicimplants AT ferreiraisabelmm drugdeliveryfrompclchitosanmultilayercoatingsformetallicimplants AT baptistaanacatarina drugdeliveryfrompclchitosanmultilayercoatingsformetallicimplants |