Cargando…
Cohesive Multi-Modality Feature Learning and Fusion for COVID-19 Patient Severity Prediction
The outbreak of coronavirus disease (COVID-19) has been a nightmare to citizens, hospitals, healthcare practitioners, and the economy in 2020. The overwhelming number of confirmed cases and suspected cases put forward an unprecedented challenge to the hospital’s capacity of management and medical re...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9280852/ https://www.ncbi.nlm.nih.gov/pubmed/35937181 http://dx.doi.org/10.1109/TCSVT.2021.3063952 |
Ejemplares similares
-
Citrus Huanglongbing Detection Based on Multi-Modal Feature Fusion Learning
por: Yang, Dongzi, et al.
Publicado: (2021) -
Fusion of Multi-Modal Features to Enhance Dense Video Caption
por: Huang, Xuefei, et al.
Publicado: (2023) -
Multi-Modal Representation via Contrastive Learning with Attention Bottleneck Fusion and Attentive Statistics Features
por: Guo, Qinglang, et al.
Publicado: (2023) -
Multi-Modal Feature Selection with Feature Correlation and Feature Structure Fusion for MCI and AD Classification
por: Jiao, Zhuqing, et al.
Publicado: (2022) -
Deep fusion of multi-modal features for brain tumor image segmentation
por: Zhang, Guying, et al.
Publicado: (2023)