Cargando…
Utility of support vector machine and decision tree to identify the prognosis of metformin poisoning in the United States: analysis of National Poisoning Data System
BACKGROUND: With diabetes incidence growing globally and metformin still being the first-line for its treatment, metformin’s toxicity and overdose have been increasing. Hence, its mortality rate is increasing. For the first time, we aimed to study the efficacy of machine learning algorithms in predi...
Autores principales: | Mehrpour, Omid, Saeedi, Farhad, Hoyte, Christopher, Goss, Foster, Shirazi, Farshad M. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281002/ https://www.ncbi.nlm.nih.gov/pubmed/35831909 http://dx.doi.org/10.1186/s40360-022-00588-0 |
Ejemplares similares
-
Correction: Utility of support vector machine and decision tree to identify the prognosis of metformin poisoning in the United States: analysis of National Poisoning Data System
por: Mehrpour, Omid, et al.
Publicado: (2022) -
Comparison of decision tree with common machine learning models for prediction of biguanide and sulfonylurea poisoning in the United States: an analysis of the National Poison Data System
por: Mehrpour, Omid, et al.
Publicado: (2023) -
Using a decision tree algorithm to distinguish between repeated supra-therapeutic and acute acetaminophen exposures
por: Mehrpour, Omid, et al.
Publicado: (2023) -
The value of machine learning for prognosis prediction of diphenhydramine exposure: National analysis of 50,000 patients in the United States
por: Mehrpour, Omid, et al.
Publicado: (2023) -
Toll of acute methanol poisoning for preventing COVID-19
por: Mehrpour, Omid, et al.
Publicado: (2020)