Cargando…
Rule-Enhanced Active Learning for Semi-Automated Weak Supervision
A major bottleneck preventing the extension of deep learning systems to new domains is the prohibitive cost of acquiring sufficient training labels. Alternatives such as weak supervision, active learning, and fine-tuning of pretrained models reduce this burden but require substantial human input to...
Autores principales: | Kartchner, David, Nakajima An, Davi, Ren, Wendi, Zhang, Chao, Mitchell, Cassie S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281613/ https://www.ncbi.nlm.nih.gov/pubmed/35845102 http://dx.doi.org/10.3390/ai3010013 |
Ejemplares similares
-
Robust Semi-Supervised Traffic Sign Recognition via Self-Training and Weakly-Supervised Learning
por: Nartey, Obed Tettey, et al.
Publicado: (2020) -
Effectiveness of Semi-Supervised Active Learning in Automated Wound Image Segmentation
por: Curti, Nico, et al.
Publicado: (2022) -
Semi-supervised incremental learning with few examples for discovering medical association rules
por: Sánchez-de-Madariaga, Ricardo, et al.
Publicado: (2022) -
Semi-supervised learning /
Publicado: (2010) -
Optimizations for Computing Relatedness in Biomedical Heterogeneous
Information Networks: SemNet 2.0
por: Kirkpatrick, Anna, et al.
Publicado: (2022)