Cargando…
Induction of Autophagy Promotes Clearance of RHO(P23H) Aggregates and Protects From Retinal Degeneration
Autophagy is a critical metabolic process that acts as a major self-digestion and recycling pathway contributing to maintain cellular homeostasis. An emerging field of research supports the therapeutic modulation of autophagy for treating human neurodegenerative disorders, in which toxic aggregates...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281868/ https://www.ncbi.nlm.nih.gov/pubmed/35847673 http://dx.doi.org/10.3389/fnagi.2022.878958 |
_version_ | 1784746981345722368 |
---|---|
author | Intartaglia, Daniela Giamundo, Giuliana Naso, Federica Nusco, Edoardo Di Giulio, Simona Salierno, Francesco Giuseppe Polishchuk, Elena Conte, Ivan |
author_facet | Intartaglia, Daniela Giamundo, Giuliana Naso, Federica Nusco, Edoardo Di Giulio, Simona Salierno, Francesco Giuseppe Polishchuk, Elena Conte, Ivan |
author_sort | Intartaglia, Daniela |
collection | PubMed |
description | Autophagy is a critical metabolic process that acts as a major self-digestion and recycling pathway contributing to maintain cellular homeostasis. An emerging field of research supports the therapeutic modulation of autophagy for treating human neurodegenerative disorders, in which toxic aggregates are accumulated in neurons. Our previous study identified Ezrin protein as an inhibitor of autophagy and lysosomal functions in the retina; thus, in turn, identifying it as a potential pharmacological target for increasing retinal cell clearance to treat inherited retinal dystrophies in which misfolded proteins have accumulated. This study aimed to verify the therapeutic inhibition of Ezrin to induce clearance of toxic aggregates in a mouse model for a dominant form of retinitis pigmentosa (i.e., RHO(P23H/+)). We found that daily inhibition of Ezrin significantly decreased the accumulation of misfolded RHO(P23H) aggregates. Remarkably, induction of autophagy, by a drug-mediated pulsatile inhibition of Ezrin, promoted the lysosomal clearance of disease-linked RHO(P23H) aggregates. This was accompanied with a reduction of endoplasmic reticulum (ER)-stress, robust decrease of photoreceptors' cell death, amelioration in both retinal morphology and function culminating in a better preservation of vision. Our study opens new perspectives for a pulsatile pharmacological induction of autophagy as a mutation-independent therapy paving the way toward a more effective therapeutic strategy to treat these devastating retinal disorders due to an accumulation of intracellular toxic aggregates. |
format | Online Article Text |
id | pubmed-9281868 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-92818682022-07-15 Induction of Autophagy Promotes Clearance of RHO(P23H) Aggregates and Protects From Retinal Degeneration Intartaglia, Daniela Giamundo, Giuliana Naso, Federica Nusco, Edoardo Di Giulio, Simona Salierno, Francesco Giuseppe Polishchuk, Elena Conte, Ivan Front Aging Neurosci Aging Neuroscience Autophagy is a critical metabolic process that acts as a major self-digestion and recycling pathway contributing to maintain cellular homeostasis. An emerging field of research supports the therapeutic modulation of autophagy for treating human neurodegenerative disorders, in which toxic aggregates are accumulated in neurons. Our previous study identified Ezrin protein as an inhibitor of autophagy and lysosomal functions in the retina; thus, in turn, identifying it as a potential pharmacological target for increasing retinal cell clearance to treat inherited retinal dystrophies in which misfolded proteins have accumulated. This study aimed to verify the therapeutic inhibition of Ezrin to induce clearance of toxic aggregates in a mouse model for a dominant form of retinitis pigmentosa (i.e., RHO(P23H/+)). We found that daily inhibition of Ezrin significantly decreased the accumulation of misfolded RHO(P23H) aggregates. Remarkably, induction of autophagy, by a drug-mediated pulsatile inhibition of Ezrin, promoted the lysosomal clearance of disease-linked RHO(P23H) aggregates. This was accompanied with a reduction of endoplasmic reticulum (ER)-stress, robust decrease of photoreceptors' cell death, amelioration in both retinal morphology and function culminating in a better preservation of vision. Our study opens new perspectives for a pulsatile pharmacological induction of autophagy as a mutation-independent therapy paving the way toward a more effective therapeutic strategy to treat these devastating retinal disorders due to an accumulation of intracellular toxic aggregates. Frontiers Media S.A. 2022-06-30 /pmc/articles/PMC9281868/ /pubmed/35847673 http://dx.doi.org/10.3389/fnagi.2022.878958 Text en Copyright © 2022 Intartaglia, Giamundo, Naso, Nusco, Di Giulio, Salierno, Polishchuk and Conte. https://creativecommons.org/licenses/by/4.0/This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Aging Neuroscience Intartaglia, Daniela Giamundo, Giuliana Naso, Federica Nusco, Edoardo Di Giulio, Simona Salierno, Francesco Giuseppe Polishchuk, Elena Conte, Ivan Induction of Autophagy Promotes Clearance of RHO(P23H) Aggregates and Protects From Retinal Degeneration |
title | Induction of Autophagy Promotes Clearance of RHO(P23H) Aggregates and Protects From Retinal Degeneration |
title_full | Induction of Autophagy Promotes Clearance of RHO(P23H) Aggregates and Protects From Retinal Degeneration |
title_fullStr | Induction of Autophagy Promotes Clearance of RHO(P23H) Aggregates and Protects From Retinal Degeneration |
title_full_unstemmed | Induction of Autophagy Promotes Clearance of RHO(P23H) Aggregates and Protects From Retinal Degeneration |
title_short | Induction of Autophagy Promotes Clearance of RHO(P23H) Aggregates and Protects From Retinal Degeneration |
title_sort | induction of autophagy promotes clearance of rho(p23h) aggregates and protects from retinal degeneration |
topic | Aging Neuroscience |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9281868/ https://www.ncbi.nlm.nih.gov/pubmed/35847673 http://dx.doi.org/10.3389/fnagi.2022.878958 |
work_keys_str_mv | AT intartagliadaniela inductionofautophagypromotesclearanceofrhop23haggregatesandprotectsfromretinaldegeneration AT giamundogiuliana inductionofautophagypromotesclearanceofrhop23haggregatesandprotectsfromretinaldegeneration AT nasofederica inductionofautophagypromotesclearanceofrhop23haggregatesandprotectsfromretinaldegeneration AT nuscoedoardo inductionofautophagypromotesclearanceofrhop23haggregatesandprotectsfromretinaldegeneration AT digiuliosimona inductionofautophagypromotesclearanceofrhop23haggregatesandprotectsfromretinaldegeneration AT saliernofrancescogiuseppe inductionofautophagypromotesclearanceofrhop23haggregatesandprotectsfromretinaldegeneration AT polishchukelena inductionofautophagypromotesclearanceofrhop23haggregatesandprotectsfromretinaldegeneration AT conteivan inductionofautophagypromotesclearanceofrhop23haggregatesandprotectsfromretinaldegeneration |