Cargando…
Mendelian randomization for causal inference accounting for pleiotropy and sample structure using genome-wide summary statistics
Mendelian randomization (MR) is a valuable tool for inferring causal relationships among a wide range of traits using summary statistics from genome-wide association studies (GWASs). Existing summary-level MR methods often rely on strong assumptions, resulting in many false-positive findings. To rel...
Autores principales: | Hu, Xianghong, Zhao, Jia, Lin, Zhixiang, Wang, Yang, Peng, Heng, Zhao, Hongyu, Wan, Xiang, Yang, Can |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282238/ https://www.ncbi.nlm.nih.gov/pubmed/35787050 http://dx.doi.org/10.1073/pnas.2106858119 |
Ejemplares similares
-
MR-LDP: a two-sample Mendelian randomization for GWAS summary statistics accounting for linkage disequilibrium and horizontal pleiotropy
por: Cheng, Qing, et al.
Publicado: (2020) -
Robust inference in summary data Mendelian randomization via the zero modal pleiotropy assumption
por: Hartwig, Fernando Pires, et al.
Publicado: (2017) -
A framework for the investigation of pleiotropy in two‐sample summary data Mendelian randomization
por: Bowden, Jack, et al.
Publicado: (2017) -
Profile‐likelihood Bayesian model averaging for two‐sample summary data Mendelian randomization in the presence of horizontal pleiotropy
por: Shapland, Chin Yang, et al.
Publicado: (2022) -
Inferring causal direction between two traits in the presence of horizontal pleiotropy with GWAS summary data
por: Xue, Haoran, et al.
Publicado: (2020)