Cargando…
Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour
The spread of infection amongst livestock depends not only on the traits of the pathogen and the livestock themselves, but also on the veterinary health behaviours of farmers and how this impacts their implementation of disease control measures. Controls that are costly may make it beneficial for in...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282555/ https://www.ncbi.nlm.nih.gov/pubmed/35834473 http://dx.doi.org/10.1371/journal.pcbi.1010235 |
_version_ | 1784747129236881408 |
---|---|
author | Hill, Edward M. Prosser, Naomi S. Ferguson, Eamonn Kaler, Jasmeet Green, Martin J. Keeling, Matt J. Tildesley, Michael J. |
author_facet | Hill, Edward M. Prosser, Naomi S. Ferguson, Eamonn Kaler, Jasmeet Green, Martin J. Keeling, Matt J. Tildesley, Michael J. |
author_sort | Hill, Edward M. |
collection | PubMed |
description | The spread of infection amongst livestock depends not only on the traits of the pathogen and the livestock themselves, but also on the veterinary health behaviours of farmers and how this impacts their implementation of disease control measures. Controls that are costly may make it beneficial for individuals to rely on the protection offered by others, though that may be sub-optimal for the population. Failing to account for socio-behavioural properties may produce a substantial layer of bias in infectious disease models. We investigated the role of heterogeneity in vaccine response across a population of farmers on epidemic outbreaks amongst livestock, caused by pathogens with differential speed of spread over spatial landscapes of farms for two counties in England (Cumbria and Devon). Under different compositions of three vaccine behaviour groups (precautionary, reactionary, non-vaccination), we evaluated from population- and individual-level perspectives the optimum threshold distance to premises with notified infection that would trigger responsive vaccination by the reactionary vaccination group. We demonstrate a divergence between population and individual perspectives in the optimal scale of reactive voluntary vaccination response. In general, minimising the population-level perspective cost requires a broader reactive uptake of the intervention, whilst optimising the outcome for the average individual increased the likelihood of larger scale disease outbreaks. When the relative cost of vaccination was low and the majority of premises had undergone precautionary vaccination, then adopting a perspective that optimised the outcome for an individual gave a broader spatial extent of reactive response compared to a perspective wanting to optimise outcomes for everyone in the population. Under our assumed epidemiological context, the findings identify livestock disease intervention receptiveness and cost combinations where one would expect strong disagreement between the intervention stringency that is best from the perspective of a stakeholder responsible for supporting the livestock industry compared to a sole livestock owner. Were such discord anticipated and achieving a consensus view across perspectives desired, the findings may also inform those managing veterinary health policy the requisite reduction in intervention cost and/or the required extent of nurturing beneficial community attitudes towards interventions. |
format | Online Article Text |
id | pubmed-9282555 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2022 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-92825552022-07-15 Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour Hill, Edward M. Prosser, Naomi S. Ferguson, Eamonn Kaler, Jasmeet Green, Martin J. Keeling, Matt J. Tildesley, Michael J. PLoS Comput Biol Research Article The spread of infection amongst livestock depends not only on the traits of the pathogen and the livestock themselves, but also on the veterinary health behaviours of farmers and how this impacts their implementation of disease control measures. Controls that are costly may make it beneficial for individuals to rely on the protection offered by others, though that may be sub-optimal for the population. Failing to account for socio-behavioural properties may produce a substantial layer of bias in infectious disease models. We investigated the role of heterogeneity in vaccine response across a population of farmers on epidemic outbreaks amongst livestock, caused by pathogens with differential speed of spread over spatial landscapes of farms for two counties in England (Cumbria and Devon). Under different compositions of three vaccine behaviour groups (precautionary, reactionary, non-vaccination), we evaluated from population- and individual-level perspectives the optimum threshold distance to premises with notified infection that would trigger responsive vaccination by the reactionary vaccination group. We demonstrate a divergence between population and individual perspectives in the optimal scale of reactive voluntary vaccination response. In general, minimising the population-level perspective cost requires a broader reactive uptake of the intervention, whilst optimising the outcome for the average individual increased the likelihood of larger scale disease outbreaks. When the relative cost of vaccination was low and the majority of premises had undergone precautionary vaccination, then adopting a perspective that optimised the outcome for an individual gave a broader spatial extent of reactive response compared to a perspective wanting to optimise outcomes for everyone in the population. Under our assumed epidemiological context, the findings identify livestock disease intervention receptiveness and cost combinations where one would expect strong disagreement between the intervention stringency that is best from the perspective of a stakeholder responsible for supporting the livestock industry compared to a sole livestock owner. Were such discord anticipated and achieving a consensus view across perspectives desired, the findings may also inform those managing veterinary health policy the requisite reduction in intervention cost and/or the required extent of nurturing beneficial community attitudes towards interventions. Public Library of Science 2022-07-14 /pmc/articles/PMC9282555/ /pubmed/35834473 http://dx.doi.org/10.1371/journal.pcbi.1010235 Text en © 2022 Hill et al https://creativecommons.org/licenses/by/4.0/This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Hill, Edward M. Prosser, Naomi S. Ferguson, Eamonn Kaler, Jasmeet Green, Martin J. Keeling, Matt J. Tildesley, Michael J. Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour |
title | Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour |
title_full | Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour |
title_fullStr | Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour |
title_full_unstemmed | Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour |
title_short | Modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour |
title_sort | modelling livestock infectious disease control policy under differing social perspectives on vaccination behaviour |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282555/ https://www.ncbi.nlm.nih.gov/pubmed/35834473 http://dx.doi.org/10.1371/journal.pcbi.1010235 |
work_keys_str_mv | AT hilledwardm modellinglivestockinfectiousdiseasecontrolpolicyunderdifferingsocialperspectivesonvaccinationbehaviour AT prossernaomis modellinglivestockinfectiousdiseasecontrolpolicyunderdifferingsocialperspectivesonvaccinationbehaviour AT fergusoneamonn modellinglivestockinfectiousdiseasecontrolpolicyunderdifferingsocialperspectivesonvaccinationbehaviour AT kalerjasmeet modellinglivestockinfectiousdiseasecontrolpolicyunderdifferingsocialperspectivesonvaccinationbehaviour AT greenmartinj modellinglivestockinfectiousdiseasecontrolpolicyunderdifferingsocialperspectivesonvaccinationbehaviour AT keelingmattj modellinglivestockinfectiousdiseasecontrolpolicyunderdifferingsocialperspectivesonvaccinationbehaviour AT tildesleymichaelj modellinglivestockinfectiousdiseasecontrolpolicyunderdifferingsocialperspectivesonvaccinationbehaviour |