Cargando…
The effects of spectral dimensionality reduction on hyperspectral pixel classification: A case study
This paper presents a systematic study of the effects of hyperspectral pixel dimensionality reduction on the pixel classification task. We use five dimensionality reduction methods—PCA, KPCA, ICA, AE, and DAE—to compress 301-dimensional hyperspectral pixels. Compressed pixels are subsequently used t...
Autores principales: | Mantripragada, Kiran, Dao, Phuong D., He, Yuhong, Qureshi, Faisal Z. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2022
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9282587/ https://www.ncbi.nlm.nih.gov/pubmed/35834472 http://dx.doi.org/10.1371/journal.pone.0269174 |
Ejemplares similares
-
Deep Spectral-Spatial Features of Near Infrared Hyperspectral Images for Pixel-Wise Classification of Food Products
por: Zhu, Hongyan, et al.
Publicado: (2020) -
Dimensionality Reduction of Hyperspectral Images Based on Improved Spatial–Spectral Weight Manifold Embedding
por: Liu, Hong, et al.
Publicado: (2020) -
Spectral-spatial classification of hyperspectral remote sensing images
por: Benediktsson, Jon Atli, et al.
Publicado: (2015) -
A Hyperspectral Image Classification Framework with Spatial Pixel Pair Features
por: Ran, Lingyan, et al.
Publicado: (2017) -
Deep learning applied to hyperspectral endoscopy for online spectral classification
por: Grigoroiu, Alexandru, et al.
Publicado: (2020)